90 research outputs found

    Acervulinid macroid and rhodolith facies in the Eocene Nummulitic Limestone of the Dauphinois Domain (Maritime Alps, Liguria, Italy)

    Get PDF
    The Eocene Nummulitic Limestone of the Dauphinois domain in the Argentina Valley (Maritime Alps, Liguria, Italy) is characterized by the local presence of carbonate ramp facies rich in acervulinid macroids, rhodoliths and larger foraminifera. The development of these particular facies is mainly controlled by palaeomorphology of the substratum, tectonics, type and amount of terrigenous supply and global sea level changes

    A Visible-Light Driven Esterification of Aldehydes Catalyzed by VOSO4

    Get PDF
    An esterification of the C-H bond of aldehydes promoted by oxidovanadium(IV) sulfate, (VOSO4)-O-IV, is reported. The process is mediated by visible-light, is carried out at room temperature, in absence of additives and using H2O2 as a benign oxidant. VOSO4 is a commercially available, earth-abundant metal (EAM(s)) salt, that does not require to be prepared. This report opens intriguing perspectives for the extended application of vanadium salts toward halogenation processes as well as for C-H activations and gives a contribution in the field of earth-abundant metals based-catalysis

    Platelet-derived growth factor C and calpain-3 are modulators of human melanoma cell invasiveness.

    Get PDF
    The molecular mechanisms responsible for the elevated metastatic potential of malignant melanoma are still not fully understood. In order to shed light on the molecules involved in the acquisition by melanoma of a highly aggressive phenotype, we compared the gene expression profiles of two cell clones derived from the human cutaneous metastatic melanoma cell line M14: a highly invasive clone (M14C2/MK18) and a clone (M14C2/C4) with low ability to invade the extracellular matrix (ECM). The highly invasive phenotype of M14C2/MK18 cells was correlated with overexpression of neuropilin-1, activation of a vascular endothelial growth factor (VEGF)-A/VEGFR-2 autocrine loop and secretion of matrix metalloprotease-2. Moreover, in an in vivo murine model, M14C2/MK18 cells displayed a higher growth rate as compared with M14C2/C4 cells, even though in vitro both clones possessed comparable proliferative potential. Microarray analysis in M14C2/MK18 cells showed a strong upregulation of platelet-derived growth factor (PDGF)-C, a cytokine that contributes to angiogenesis, and downregulation of calpain-3, a calcium-dependent thiol-protease that regulates specific signalling cascade components. Inhibition of PDGF-C with a specific antibody resulted in a significant decrease in ECM invasion by M14C2/MK18 cells, confirming the involvement of PDGF-C in melanoma cell invasiveness. Moreover, the PDGF-C transcript was found to be upregulated in a high percentage of human melanoma cell lines (17/20), whereas only low PDGF-C levels were detected in a few melanocytic cultures (2/6). By contrast, inhibition of calpain-3 activity in M14C2/C4 control cells, using a specific chemical inhibitor, markedly increased ECM invasion, strongly suggesting that downregulation of calpain-3 plays a role in the acquisition of a highly invasive phenotype. The results indicate that PDGF-C upregulation and calpain-3 downregulation are involved in the aggressiveness of malignant melanoma and suggest that modulators of these proteins or their downstream effectors may synergise with VEGF‑A therapies in combating tumour-associated angiogenesis and melanoma spread

    Temozolomide and cisplatin in relapsed/refractory acute leukemia

    Get PDF
    Cisplatin depletes MGMT and increases the sensitivity of leukemia cells to temozolomide. We performed a phase I study of cisplatin and temozolomide in patients with relapsed and refractory acute leukemia. Fifteen patients had AML, 3 had ALL, and 2 had biphenotypic leukemia. The median number of prior chemotherapy regimens was 3 (1–5). Treatment was well tolerated up to the maximal doses of temozolomide 200 mg/m2/d times 7 days and cisplatin 100 mg/m2 on day 1. There was one complete remission in this heavily pretreated patient population. Five of 20 (25%) patients demonstrated a significant reduction in bone marrow blasts

    Evaluation of biomimetic hyaluronic-based hydrogels with enhanced endogenous cell recruitment and cartilage matrix formation

    Get PDF
    Biomaterials play a pivotal role in cell-free cartilage repair approaches, where cells must migrate through the scaffold, fill the defect, and then proliferate and differentiate facilitating tissue remodeling. Here we used multiple assays to test the influence of chemokines and growth factors on cell migration and cartilage repair in two different hyaluronan (HA)-based hydrogels. We first investigated bone marrow Mesenchymal Stromal Cells (BMSC) migration in vitro, in response to different concentrations of platelet-derived growth factor-BB (PDGF-BB), chemokine ligand 5 (CCL5/RANTES) and stromal cell-derived factor 1 (SDF-1), using a 3D spheroid-based assay. PDGF-BB was selected as most favourable chemotactic agent, and MSC migration was assessed in the context of physical impediment to cell recruitment by testing Fibrin-HA and HA-Tyramine hydrogels of different cross-linking densities. Supplementation of PDGF-BB stimulated progressive migration of MSC through the gels over time. We then investigated in situ cell migration into the hydrogels with and without PDGF-BB, using a cartilage-bone explant model implanted subcutaneously in athymic mice. In vivo studies show that when placed into an osteochondral defect, both hydrogels supported endogenous cell infiltration and provided an amenable microenvironment for cartilage production. These processes were best supported in Fibrin-HA hydrogel in the absence of PDGF-BB. This study used an advanced preclinical testing platform to select an appropriate microenvironment provided by implanted hydrogels, demonstrating that HA-based hydrogels can promote the initial and critical step of endogenous cell recruitment and circumvent some of the clinical challenges in cartilage tissue repair. Statement of significance: The challenge of articular cartilage repair arises from its complex structure and architecture, which confers the unique mechanical behavior of the extracellular matrix. The aim of our research is to identify biomaterials for implants that can support migration of endogenous stem and progenitor cell populations from cartilage and bone tissue, in order to permanently replace damaged cartilage with the original hyaline structure. Here, we present an in vitro 3D spheroid-based migration assay and an osteochondral defect model, which provide the opportunity to assess biomaterials and biomolecules, and to get stronger experimental evidence of the not well-characterized dynamic process of endogenous cells colonization in an osteochondral defect. Furthermore, the delicate step of early cell migration into biomaterials towards functional tissue engineering is reproduced. These tests can be used for pre-clinical testing of newly developed material designs in the field of scaffold engineering

    Dose finding and O6-alkylguanine-DNA alkyltransferase study of cisplatin combined with temozolomide in paediatric solid malignancies

    Get PDF
    Cisplatin may have additive activity with temozolomide due to ablation of the DNA repair protein O6-alkylguanine-DNA alkyltransferase (MGMT). This phase I/II study determined recommended combination doses using the Continual Reassessment Method, toxicities and antitumour activity in paediatric patients, and evaluated MGMT in peripheral blood mononuclear cells (PBMCs) in order to correlate with haematological toxicity. In total, 39 patients with refractory or recurrent solid tumours (median age ∼13 years; 14 pretreated with high-dose chemotherapy, craniospinal irradiation, or having bone marrow involvement) were treated with cisplatin, followed the next day by oral temozolomide for 5 days every 4 weeks at dose levels 80 mg m−2/150 mg m−2 day−1, 80/200, and 100/200, respectively. A total of 38 patients receiving 113 cycles (median 2, range 1–7) were evaluable for toxicity. Dose-limiting toxicity was haematological in all but one case. Treatment-related toxicities were thrombocytopenia, neutropenia, nausea-vomiting, asthenia. Hearing loss was experienced in five patients with prior irradiation to the brain stem or posterior fossa. Partial responses were observed in two malignant glioma, one brain stem glioma, and two neuroblastoma. Median MGMT activity in PBMCs decreased after 5 days of temozolomide treatment: low MGMT activity correlated with increased severity of thrombocytopenia. Cisplatin–temozolomide combinations are well tolerated without additional toxicity to single-agent treatments; the recommended phase II dosage is 80 mg m−2 cisplatin and 150 mg m−2 × 5 temozolomide in heavily treated, and 200 mg m−2 × 5 temozolomide in less-heavily pretreated children

    Junín Virus Infection of Human Hematopoietic Progenitors Impairs In Vitro Proplatelet Formation and Platelet Release via a Bystander Effect Involving Type I IFN Signaling

    Get PDF
    Argentine hemorrhagic fever (AHF) is an endemo-epidemic disease caused by Junín virus (JUNV), a member of the arenaviridae family. Although a recently introduced live attenuated vaccine has proven to be effective, AHF remains a potentially lethal infection. Like in other viral hemorrhagic fevers (VHF), AHF patients present with fever and hemorrhagic complications. Although the causes of the bleeding are poorly understood, impaired hemostasis, endothelial cell dysfunction and low platelet counts have been described. Thrombocytopenia is a common feature in VHF syndromes, and it is a major sign for its diagnosis. However, the underlying pathogenic mechanism has not yet been elucidated. We hypothesized that thrombocytopenia results from a viral-triggered alteration of the megakaryo/thrombopoiesis process. Therefore, we evaluated the impact of JUNV on megakaryopoiesis using an in vitro model of human CD34+ cells stimulated with thrombopoietin. Our results showed that CD34+ cells are infected with JUNV in a restricted fashion. Infection was transferrin receptor 1 (TfR1)-dependent and the surface expression of TfR1 was higher in infected cultures, suggesting a novel arenaviral dissemination strategy in hematopoietic progenitor cells. Although proliferation, survival, and commitment in JUNV-infected cultures were normal, viral infection impaired thrombopoiesis by decreasing in vitro proplatelet formation, platelet release, and P-selectin externalization via a bystander effect. The decrease in platelet release was also TfR1-dependent, mimicked by poly(I:C), and type I interferon (IFN α/β) was implicated as a key paracrine mediator. Among the relevant molecules studied, only the transcription factor NF-E2 showed a moderate decrease in expression in megakaryocytes from either infected cultures or after type I IFN treatment. Moreover, type I IFN-treated megakaryocytes presented ultrastructural abnormalities resembling the reported thrombocytopenic NF-E2−/− mouse phenotype. Our study introduces a potential mechanism for thrombocytopenia in VHF and other diseases associated with increased bone marrow type I IFN levels

    A phase II trial of lomeguatrib and temozolomide in metastatic colorectal cancer

    Get PDF
    To evaluate the tumour response to lomeguatrib and temozolomide (TMZ) administered for 5 consecutive days every 4 weeks in patients with metastatic colorectal carcinoma. Patients with stage IV metastatic colorectal carcinoma received lomeguatrib (40 mg) and TMZ (50–200 mg m−2) orally for 5 consecutive days every 4 weeks. Response was determined every two cycles. Pharmacokinetics of lomeguatrib and TMZ as well as their pharmacodynamic effects in peripheral blood mononuclear cells (PBMC) were determined. Nineteen patients received 49 cycles of treatments. Despite consistent depletion of O6-methylguanine-DNA methyltransferase in PBMC, none of the patients responded to treatment. Three patients had stable disease, one for the duration of the study, and no fall in carcinoembryonic antigen was observed in any patient. Median time to progression was 50 days. The commonest adverse effects were gastrointestinal and haematological and these were comparable to those of TMZ when given alone. This combination of lomeguatrib and TMZ is not efficacious in metastatic colorectal cancer. If further studies are to be performed, emerging data suggest that higher daily doses of lomeguatrib and a dosing period beyond that of TMZ should be evaluated

    Chronic social stress increases nitric oxide-dependent vasorelaxation in normotensive rats

    Get PDF
    The aim of this study was to examine oxidative load and endothelium-dependent vasorelaxation in the serotonin pre-constricted femoral artery (FA) of Wistar-Kyoto (WKY) rats exposed to chronic social stress produced by crowding in the presence or absence of ascorbic acid (AsA) in working solution. Adult male rats were randomly divided into control (living space: 480 cm2/rat) or stressed (living space: 200 cm2/rat) groups for 8 weeks. Blood pressure and heart rate, determined using tail-cuff plethysmography, were not influenced by stress vs. control. Conjugated dienes (CD) and concentrations of thiobarbituric acid-reactive substances (TBARS) were measured in the left ventricle and liver (for assessment of oxidative load) and were found unchanged by chronic crowding. The nitric oxide (NO)-dependent component of endothelium-dependent relaxation was investigated in the FA using a wire myograph. In both the presence and absence of AsA, acetylcholine-induced relaxation of the FA of stressed rats significantly exceeded that of the controls, which was associated with an increase of the NO-dependent component. In conclusion, the data showed that chronic crowding did not produce oxidative stress in the organs investigated and indicate that elevation of NO production during chronic stress is an important way of adaptation, which may prevent normotensive rats from the development of stress-induced hypertension
    • …
    corecore