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a b s t r a c t 

Biomaterials play a pivotal role in cell-free cartilage repair approaches, where cells must migrate through 

the scaffold, fill the defect, and then proliferate and differentiate facilitating tissue remodeling. Here we 

used multiple assays to test the influence of chemokines and growth factors on cell migration and car- 

tilage repair in two different hyaluronan (HA)-based hydrogels. We first investigated bone marrow Mes- 

enchymal Stromal Cells (BMSC) migration in vitro , in response to different concentrations of platelet- 

derived growth factor-BB (PDGF-BB), chemokine ligand 5 (CCL5/RANTES) and stromal cell-derived factor 

1 (SDF-1), using a 3D spheroid-based assay. PDGF-BB was selected as most favourable chemotactic agent, 

and MSC migration was assessed in the context of physical impediment to cell recruitment by testing 

Fibrin-HA and HA-Tyramine hydrogels of different cross-linking densities. Supplementation of PDGF-BB 

stimulated progressive migration of MSC through the gels over time. We then investigated in situ cell 

migration into the hydrogels with and without PDGF-BB, using a cartilage-bone explant model implanted 

subcutaneously in athymic mice. In vivo studies show that when placed into an osteochondral defect, 

both hydrogels supported endogenous cell infiltration and provided an amenable microenvironment for 

cartilage production. These processes were best supported in Fibrin-HA hydrogel in the absence of PDGF- 

BB. This study used an advanced preclinical testing platform to select an appropriate microenvironment 

provided by implanted hydrogels, demonstrating that HA-based hydrogels can promote the initial and 

critical step of endogenous cell recruitment and circumvent some of the clinical challenges in cartilage 

tissue repair. 

Statement of significance 

The challenge of articular cartilage repair arises from its complex structure and architecture, which con- 

fers the unique mechanical behavior of the extracellular matrix. The aim of our research is to identify 

biomaterials for implants that can support migration of endogenous stem and progenitor cell popula- 

tions from cartilage and bone tissue, in order to permanently replace damaged cartilage with the original 

hyaline structure. 

Here, we present an in vitro 3D spheroid-based migration assay and an osteochondral defect model, 

which provide the opportunity to assess biomaterials and biomolecules , and to get stronger experimental 

evidence of the not well-characterized dynamic process of endogenous cells colonization in an osteochon- 

dral defect. Furthermore, the delicate step of early cell migration into biomaterials towards functional 
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1. Introduction 

Articular cartilage is a load bearing tissue with a unique com-

position and structure. Once damaged, its poor intrinsic repair

ability results in permanent functional impairment, which often

leads to osteoarthritis in absence of treatment [1 , 2] . A number of

studies have shown limited cell infiltration of the cartilage tissue

as an impediment to endogenous repair [3] . Effective management

of cartilage lesions can be challenging, creating a burden for

both patients and clinicians. With conservative treatment being

unsuccessful, surgical interventions are proposed for articular

cartilage lesions, such as microfracture or osteochondral allograft

transplantation. When perforations penetrating the subchondral

bone are created in the context of marrow stimulating techniques

(microfracture), invading cells often exhibit limit healing potential,

producing a fibrocartilaginous tissue with poor mechanical proper-

ties, rather than hyaline cartilage [4] . To overcome this issue, cell

delivery approaches like autologous chondrocyte implantation and

matrix-induced autologous chondrocyte implantation (ACI, MACI),

have been established as cartilage repair methods [5–7] . Recently

clinical interventions based on autologous mesenchymal stromal

cells (MSCs) transplantation have been proposed [5–7] . When

evaluating studies comparing patients treated with ACI/MACI and

with autologous bone marrow derived MSCs, similar improve-

ments were reported in relation to clinical outcome and pain

score [8 , 9] . Nonetheless these cell-based therapies face important

limitations, due to enormous costs for the patients as well as cell

handling, time and regulation related to safety [10] . 

The extracellular matrix (ECM) of articular cartilage is a highly

functional dense connective tissue, but its restrictive barriers im-

pede endogenous cell migration. Partial degradation of the ECM at

the wound edge of the cartilage has been proposed to reduce its

stiffness [11–13] and enhance endogenous cell migration. Although

these findings have shown that cells, that are normally trapped

in the dense ECM, are capable of initiating tissue repair once they

reach the edge of the lesion, in term of diarthroidal joint studies

have suggested that cells might normally come from bone and

bone marrow side and even from synovium [14 , 15] . The induction

of cell mobility to recruite cells into the defect is an attractive

option that has already been described for in situ regeneration

of multiple tissues [14,16] , in order to circumvent issues related

to cell-based therapy. There is a pressing need to identify the

optimal biomaterials [17] and recruitment factors that can be

used as cell free approach for cartilage regeneration strategies.

A variety of scaffolds and bioactive compounds were shown to

promote stem and progenitor cell recruitment and improve cell

differentiation [3 , 18] . However, to date, no studies have identified

the effective biomaterial that would promote the recruitment and

differentiation of endogenous stem/progenitor cells to achieve

functional cartilage regeneration in situ . 

Hyaluronan (HA) is a component of the cartilage matrix that

has both chondro-protective and chondro-inductive properties

[19] . HA-based biomaterials have been shown to enhance healing

processes in osteochondral defects in rabbit and minipig models

[20 , 21] . They possess a unique biochemical composition that

recreate the embryonic-like microenvironment [22] , which may

be favorable for the regenerative process. HA-based hydrogels

can be enzymatically cross-linked in situ , rendering the system

safely injectable and non-invasive [23 , 24] . HA-Tyramine (HA-Tyr)
d. These tests can be used for pre-clinical testing of newly developed ma-

ffold engineering. 

© 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

ydrogels have been developed as drug carriers for protein de-

ivery [25 , 26] and for tissue engineering applications [27] . It is

nown that by tuning the hydrogel the microenvironment can be

odulated, which in turn can regulate spatial cell organization

nd matrix biosynthesis. HA-Tyr-conjugates have advantageous

aterial chemistry perspectives, the system is enzymatically cross-

inked via a reaction catalyzed by horseradish peroxidase (HRP)

sing hydrogen peroxide (H 2 O 2 ) as substrate. The fine tuning of its

echanical strength can be achieved by the H 2 O 2 concentration

ithout affecting the gelation rate [25] . It has been shown that

arying the HA-Tyr hydrogel cross-linking density MSC differen-

iation and matrix biosynthesis can be modulated [28] . Fibrin-HA

FB/HA) combination is widely used in tissue engineering and

he specific conjugation of FB/HA hydrogel (Regenogel TM ), is well

nown for its applications in the regeneration of various tissues,

uch as cartilage and intervertebral disc [16,23,29] . The particular

ethod employed for conjugation of HA to fibrinogen allows high

ersatility of the resulting hydrogels by alternating the molecular

eight of HA, degree of activation and Fibrinogen/HA ratio. The

esulting hydrogels are particularly stable compared to other Fibrin

ased scaffolds with remarkably lower rate of degradation of fibrin

nd a lager mesh size, thus allowing better cell migration and

CM deposition [23] . 

This study uses a sequence of assays to compare different HA-

ontaining hydrogels for cell mobility, differentiation and matrix

eposition. We evaluated the ability of human bone marrow stro-

al cells (hBMSCs) to migrate in a hydrogel under the influence

f different chemokines, i.e. PDGF-BB, RANTES and SDF-1 in a 3D

pheroid-based assay. After selecting PDGF-BB as strongest stim-

lator of MSC migration, we tested the injectable FB/HA formula-

ion and HA-Tyr hydrogels with different cross-linking densities for

heir ability to allow cell migration and support chondrogenic dif-

erentiation in vitro . Finally, a bovine osteochondral explant model

as used as hydrogel testing platform to monitor the recruitment

f endogenous cells to the injury site in an in vivo mouse model . 

. Materials and methods 

.1. Cell isolation and culture 

Bone marrow aspirates were collected from 6 patients undergo-

ng total hip replacement (age 50–78 years) after informed consent

approved by the local Medical Ethical Committees of Erasmus

C: protocol MEC-2015–644; and Albert Schweizer Hospital:

rotocol 2011.07). Mesenchymal stem cells were isolated from

eftover iliac crest bone chip material obtained from 1 patient

age 13 years) undergoing alveolar bone graft surgery (as leftover

aterial with approval of local Medical Committee of Erasmus

C: MEC-2014–16). Human bone marrow stromal cells (hBMSCs)

ere expanded at a seeding density of 2300 cells/cm 

2 in alpha-

inimum Essential Medium ( α-MEM; Gibco, Carlsbad, California,

nited States) supplemented with 10% fetal bovine serum (FBS,

ibco, Carlsbad, California, United States), 50 μg/mL gentamycin

Gibco, Carlsbad, California, United States), 1.5 μg/mL fungizone

Gibco, Carlsbad, California, United States), 1 ng/mL fibroblast

rowth factor 2 (FGF2; AbD Serotec, Puchheim, Germany) and

5 μg/mL ascorbic acid-2-phosphate (AA-2-P, Sigma-Aldrich, Saint

ouis, MO). Medium was renewed twice a week. Passage 3 or 4

BMSCs were used for in vitro experiments. 
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.2. Synthesis of Fibrinogen-Ha and HA-Tyramine conjugates and 

ydrogel formation 

FB/HA conjugates were synthesized by the reaction of a

uffered fibrinogen solution with a HA-active ester solution using

A molecular weight of 235 kDa (LifeCore Biomedical, LLC, Chaska,

N, USA) at FB/HA w/v ratio of 3.2:1 (6.25 mg/mL and 1.96 mg/mL

espectively, (ProCore Ltd. Ness Ziona, Israel) [23] . For hydrogel for-

ation, a thrombin solution (50 U/mL, Sigma-Aldrich, Missouri,

SA) containing calcium chloride (1 M CaCl 2 ) was mixed to FB/HA

onjugate, vortexed and polymerized at 37 °C for 30 min. A similar

ormulation of FB/HA hydrogel, containing higher molecular weight

A, is approved for clinical use for the treatment of Osteoarthritis

nd associated pain ( www.RegenoGel.com by ProCore Ltd, Israel). 

HA-Tyramine was synthesized as previously described [30] .

riefly, sodium hyaluronate (280/290 kDa, Contipro Biotech S.R.O.,

olni Dobrouc, Czech Republic) was dissolved in deionized H 2 O

1% w/v). HA-Tyramine conjugates were prepared in a one-step

eaction by adding 23.4 mmol 4-(4,6-dimethoxy-1,3,5-triazin-2-

l) −4-methylmorpholinium chloride (DMTMM, TCI Europe) as cou-

ling agent and subsequently 25 mmol tyramine hydrochloride

Tyr, Sigma Aldrich, Buchs, Switzerland) dropwise to the solu-

ion. After precipitation, lyophilization and reconstitution in PBS,

V −vis analyses were performed to confirm substitution of tyra-

ine on HA (DS mol 14%). In a typical setup for hydrogel formation,

reshly prepared solution of 0.5 U/ml HRP in phosphate buffered

aline (PBS) was added to an aqueous solution of 3.5% (w/v) of HA-

yr conjugates, and rotated overnight at 4 °C. To induce hydrogel

ormation, different H 2 O 2 concentrations (150, 30 0, 60 0 μM) were

dded and immediately vortexed to form HA-Tyr hydrogels with

ifferent cross-linking densities (HA-Tyr 150, HA-Tyr 300 and HA-

yr 600, respectively), in order to provide a homogeneous distribu-

ion within the pre-hydrogel solution before gelation occurs. The

oncentrations of H 2 O 2 were determined based on cross-linking

ensity achievement and cell survival [28] . For the screening of

actors to stimulate migration of MSCs, rat tail collagen I hydro-

el (Life Technologies, Carlsbad, California, United States) was used.

riefly, 0.6% Collagen hydrogels were prepared on ice by mixing

0X PBS, dH 2 O and 1 N sodium hydroxide (NaOH) and incubating

t 37 °C, 5% CO 2, for 30–40 min until a firm gel was formed, ac-

ording to manufacturer’s instructions. 

.3. Rheological measurements 

For rheological study, all hydrogels (400 μL) were prepared

n 12 well plates. Oscillatory tests (amplitude and time sweep)

ere performed at 37 °C using an Anton-Paar MCR-302 rheometer

quipped with a Peltier controller and 25 mm plate-plate geome-

ry. To monitor shear elastic moduli (G’) and loss of moduli (G”)

f the hydrogels a humid chamber was created by placing water

rops around the platform and a chamber cover on top. The stor-

ge modulus (G’) was measured at a strain of 1%, which was de-

ermined to be within the linear viscoelastic region. 

.4. Swelling ratio studies and mesh size calculation 

Hydrogel disks (200 μL) were swollen in PBS for 72 h at 37 °C.

hen the hydrogel were gently blotted dry with Kimwipe and

eighed immediately after. The disks were lyophilized overnight

o obtain the dry weight. The swelling ratio was calculated by the

ollowing equation: 

Swelling ratio = Ws/Wd where Ws is the swollen weight and

d is the dry weight. 

The mesh size of HA-Tyr 150, 300 and 600 was calculated based

n equilibrium swelling theory, using Flory–Rehner model [31 , 32] . 
.5. In vitro 3D spheroid-based migration assay 

3D spheroid migration assay was used to evaluate cell migra-

ion as a function of different chemoattractants and varying con-

entrations of hydrogel. Micro-molds (Micro Tissues 3D Petri Dish,

igma Aldrich, Missouri, USA) were used to cast 3D agarose Petri

ish, in order to form uniform size spheroids ( Fig. 1 A). Each micro-

old forms 256 circular micro-wells (diam. 400 μm x 800 μm) in a

6 × 16 array. After gelation, the agarose micro molds were placed

n a 12 well-plate and equilibrated with α-MEM supplemented

ith 10% FBS, 25 μg/ml AA-2P at 37 °C, 5% CO 2 for 1 h. In paral-

el, hBMSCs (1 × 10 6 cell/ml) were fluorescently labelled according

o the manufacturer’s instructions (Vybrant CFDA-SE Cell tracer Kit,

hermo Fisher, Carlsbad, California, United States). Suspensions of

FDA-SE labelled hBMSCs (1.28 × 10 5 cells) were seeded into each

garose micro-mold and incubated at 37 °C, 5% CO 2 for 24 h in cul-

ure media, in order to form spheroids containing 500 cells per

icro-well. The next day, spheroids formation was assessed using

 standard inverted microscope to exclude the 3D Petri dishes con-

aining uneven size spheroids or the presence of individual cells.

o collect spheroids, the micro molds were inverted in a new 12

ell-plate containing α-MEM supplemented with 1% insulin, trans-

errin and selenium (ITS + , Sigma Aldrich, Missouri, United States),

5 μg/mL AA-2P (called from now on serum free medium, SF) and

entrifuged for 5 min at 120 g. The SF medium containing the har-

ested spheroids was transferred in falcon tube and centrifuged for

0 s at 300 g to remove the supernatant. Then spheroids seeding

as done after partial gelation on collagen gel (as it gels slowly),

n order to avoid spheroids settling to the bottom of the gel and

onsequently fusion. Chambers slides (Nunc cell culture imaging 8

ells; Thermo Fisher, Carlsbad, California, United States) were used

o polymerize collagen gel, 125 μl were added to each well (9.4 mm

nd 10.7 mm in size with a thickness of 1.2 mm). 

In FB/HA and HA-Tyr hydrogels (HA-Tyr 150, 300 and 600), the

pheroids were uniformly resuspended in the hydrogel prior gela-

ion. As these hydrogels polymerize rapidly, there was no problem

f spheroid settling or fusion. 1 mL containing 240 spheroids was

ransferred into each well of 12 well-plate (diameter of 22.8 mm

nd height of 2.4 mm) and incubated for gelation at 37 °C respec-

ively for 30 min . 

Collagen I hydrogels containing about 30 spheroids were cul-

ured for 48 h in SF medium in the presence or absence of 50 or

00 ng/mL of chemokine (C 

–C motif) ligand 5 (CCL5/RANTES), stro-

al derived factor 1 (SDF-1) or platelet derived growth factor BB

PDGF-BB, Peprotech, NJ, USA); whereas HA-based hydrogels were

ultured with or without addition of 50 ng/mL PDGF-BB for 24 h,

8 h and 72 h [33] . For FB/HA hydrogels, Aprotinin (500 kIU/ml,

igma Aldrich, Missouri, USA) was supplemented into the media

o prevent early degradation during culture. To monitor cell mi-

ration, a confocal microscope was used (Leica SP5, 10X magnifi-

ation, FITC channel). Through the z-stack option of the confocal

icroscope all the spheroids were imaged from the top to the bot-

om in order to consider every single cell path, enabling individ-

al cells tracking (3D reconstruction, Suppl. Fig.1A). Cell migration

rea from the core was quantified by averaging automated counts

rom 5 random spheroids, running a macro developed in house us-

ng Fiji image processing software. The macro developed in house

easures the cell migratory area in 2D , by running the Z Project

unction the software projects at maximum intensity all the stacks

cquired covering the whole 3D area (Suppl. Fig 1 B). From these

ictures the macro excludes the core and sprouting cells (red) and

ount the area of cell migrating from the core (green), making con-

entric circles of 10 μm radius (yellow). The algorithm generated

oncentric circles, each of increasing 10 μm radius and tracked the

ells present in each of these circles. Then the area of migrating

ells and distance of cells in each of these circles, with respect to

http://www.RegenoGel.com
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Fig. 1. Dose response-study of factors on hBMSCs migration in collagen hydrogel. (A) Scheme of 3D spheroids formation and migration assay in hydrogels. (B) Represen- 

tative images of BMSCs migrating from the spheroids core at 48 h of culture in absence or in presence of 50 or 100 ng/mL of RANTES, PDGF-BB or SDF-1; 10X magnification, 

scale bar indicates 500 μm. (C) Migratory area (μm 

2 ) of hBMSCs encapsulated in collagen hydrogel in absence or in presence of 50 or 100 ng/mL of RANTES, PDGF-BB and 

SDF-1. Results from 4 hBMSC donors assessed in triplicate (donor 2) and quadruplicate (donors 1, 3 and 4) are shown; ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. 
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the core, was calculated and the area of all migratory cells was

summed up to get the total migratory area. 

2.6. HA-based hydrogels invasion assay 

To better mimic cell infiltration from the periphery into the gel,

all HA-based hydrogels were formed in the presence or absence

of 100 ng/mL PDGF-BB, this concentration was chosen based on

our initial dose-response experiment and on a previous study [33] .

1 mL of hydrogel was polymerized into each well of 12 well-plate

(diameter of 22.8 mm and height of 2.4 mm), then the hydrogel

was cut in an equal quarter of a circle. Each quarter of 250 μL

of HA-based hydrogel with a thickness of 2.4 mm was used for

the invasion assay. Then the gels (250 μL) were maintained in

suspension in 50 mL falcon tubes for 3 h at 37 °C in 500 μL of SF

medium containing CFDA-SE labelled hBMSCs (5 × 10 5 cells) under

gentle shaking to avoid cell settlement and to allow cell adhesion

to the gels ( n = 3/group). Afterwards 1.5 mL of fresh SF medium

was added in each gel per tube and gels were cultured for 7

days at 37 °C (Suppl. Fig. 2 A). Medium was changed every second

day. For cell ingrowth detection, all gels were imaged at confocal

microscope. For HA-Tyr gels multiple z-stacks of 5 μm intervals

were acquired (10X magnification), whereas for FB/HA hydrogels

due to the opacity, tile scans were performed in the center after

cutting the hydrogel in the middle; cell infiltration was visualized

in the FITC channel. 

2.7. PDGF-BB release from hydrogels 

The release of PDGF-BB from HA-based hydrogels in vitro was

assessed as previously described [34] . The selected dose of PDGF-

BB used in this assay was similar to in vivo experiment (see para-

graph 2.10). Briefly, 300 μL of hydrogels (diameter of 10.7 mm and

thickness of 3.4 mm) loaded with 2 ng/μL PDGF-BB, were formed

in 48 well-plates at 37 °C . Then 600 μL of buffer (PBS, 0.5% BSA)
as added to the plate and incubated at 37 °C for 7 days. At pre-

etermined time points – 0, 2 h, 8 h, 24 h, 72 h, 120 h, 168 h – half

f the medium (300 μL) was collected and replaced by the same

olume of fresh medium. Cumulative release of PDGF-BB was mea-

ured by quantifying the chemokine in the medium using an ELISA

it (human PDGF-BB, DuoSet ELISA, R&D System, Minnesota, USA). 

.8. hBMSCs encapsulation and chondrogenic differentiation in 

A-based hydrogels 

Briefly, hBMSC-FB/HA and hBMSC 

–HA-Tyr suspensions were

ixed with thrombin solution and with 0.5 U/mL HRP and vary-

ng concentrations of H 2 O 2 (150, 30 0, 60 0 μM) respectively, to form

ell-hydrogels constructs with a cell density of 3 × 10 6 cells/mL

n 12 well-plates. After gelation for 30 min, the constructs were

ultured in complete chondrogenic medium (CCM) for four weeks

day 0 was used as control); medium was changed every second

ay. The CCM consisted in Dulbecco’s modified Eagle’s medium

ith Glutamax (DMEM-HG; Gibco, Carlsbad, California, United

tates) supplemented with 1% ITS, 50 μg/mL fungizone, 1.5 μg/mL

entamicyn, 1 mM sodium pyruvate (Gibco, Carlsbad, California,

nited States), 40 μg/mL proline (Sigma Aldrich, Missouri, USA),

00 nM Dexamethasone (Sigma Aldrich, Missouri, USA), 10 ng/mL

ecombinant human transforming growth factor beta 1 (TGF- β1;

&D System, Minnesota, USA). The hBMSC used in this assay were

solated from patients undergoing total hip replacement and from

he iliac crest chip of 1 patient. Samples were collected for RNA

solation or histological analysis on day 28. 

.9. RNA isolation and qRT-PCR 

After 28 days of culture, hBMSC/HA-Fibrin and hBMSC/HA-

yr -constructs were manually homogenized using a pellet pestle,

urther digested with hyaluronidase, and total RNA was extracted
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Fig. 2. PDGF-BB induces progressive increase of cell migration in FB/HA and HATyr hydrogels with different crosslinking densities. (A) Migratory area (μm 

2 ) of hBMSCs 

encapsulated in FB/HA and HA-Tyr 150, 300 and 600 at 24 h, 48 h and 72 h of culture in absence or in presence of 50 ng/mL of PDGF-BB. Results from 3 hBMSC donors 

assessed in quintuplicate are shown; ∗∗p < 0.01 ∗∗∗p < 0.001. (B) Representative images of BMSCs migrating from the spheroids core at 72 h of culture in absence or in presence 

of 50 and 100 ng/mL of PDGF-BB; 10X magnification, scale bar indicates 500μm. 
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sing the miRNeasy micro Kit (Qiagen, Hilden, Germany), ac-

ording to the manufacturer’s instructions. RNA concentration

nd quality were measured using NanoDrop ND100 UV–VIS

pectrophotometer (Isogen Life Science B.V, de Meern, the Nether-

ands). cDNA was prepared using RevertAid First Strand cDNA

ynthesis Kit (ThermoFisher, Carlsbad, California, United States)

ccording to the manufacturer’s instructions. qRT-PCR was per-

ormed in 20 μL reactions on ABI Prism 70 0 0 system (Applied

iosystem, Foster City, CA, USA) using either Taqman Universal PCR

astermix (Applied Biosystem, Foster City, CA, USA) or SyberGreen

Eurogenetc, Seraing, Belgium). The expression of collagen type 2

 COL2 ) and aggrecan ( ACAN ) was determined. Glyceraldehyde-3-

hosphate dehydrogenase ( GAPDH ) was selected as reference gene

fter comparison with other housekeeping genes [35] . Data were

alculated as relative mRNA values. 

.10. In-vivo subcutaneous osteochondral defect model 

To evaluate the effect of the hydrogels on cartilage repair via in-

rowth of endogenous cells, an in vivo subcutaneous mouse model

as used. All animal experiments were approved by the local

nimal committee (EMC3284, protocol number 116–14–02). Os-

eochondral defects were created in osteochondral biopsies (8 mm

iameter, 5 mm height) harvested from metacarpal-phalangeal

oints of 3 to 8 months old calves as described previously [36] .

our mm diameter dermal biopsy punches (Stiefel Laboratories,

unich, Germany) and scalpels were used to create osteochondral

efects. The defects in the osteochondral plugs were either left

nfilled (empty) or filled with FB/HA or HA-Tyr 150 hydrogels
ith or without 1 μg/mL of PDGF-BB ( n = 5/group). In comparison

o in vitro migration and invasion assay, a higher concentration of

DGF-BB was employed since the growth factor in vivo is expected

o be released over several days and more easily degraded by

roteases [37] . Osteochondral explants were covered with Neuro–

atch membrane (Braun, Melsungen, Germany) to prevent host

ell ingrowth and were implanted subcutaneously in female NMRI

u/nu mice (Charles River, Wilmington, MA, USA) under isoflurane

naesthesia. Four incisions were made on the dorsum of each

nimal, and subcutaneous’ pockets were created using a blunt

lade; one construct was placed in every pocket and the incisions

ere closed with wound clips. 

After 4 weeks, mice were euthanized by cervical dislocation,

he constructs were carefully removed and fixed in 4% formalin

or 5 days. Then samples were decalcified in 10% EDTA for two

eeks, subsequently embedded in paraffin and subjected to his-

ology (Thionin staining) or immunohistochemistry (Collagen type

 deposition). 

.11. Histology and immunohistochemistry 

Retrieved samples were embedded in paraffin and sectioned

6 μm sections). Slides were deparaffinised and stained with

hionin to visualize glycosaminoglycans in the extracellular ma-

rix. Briefly, slides were first stained with Thionin solution (0.04%

hionin in 0.01 M aqueous sodium acetate, Sigma-Aldrich, Mis-

ouri, United States) for 8 min and differentiated in 70% ethanol

or 8 s. The cross-sectional area of the osteochondral defect, the

umber of the infiltrated cells and the area of newly formed
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Thionin positive tissue were determined using Fiji software (Na-

tional Institutes of Health, Bethesda, MA, USA). Cell ingrowth into

the hydrogels was assessed by counting the number of cell nuclei

infiltrating the defect area of the cartilage layer (CL) and the defect

area of the subchondral bone (SB) in Thionin stained cross-sections

( n = 5/group, n = 3sections/sample). To convert RGB images in 8 bit

we used a trainable weka segmentation plugin, in order to train

the software to define the classes of area to exclude (different

shadows of background, Thionin staining) and select the area of

interest (in this case the cells nuclei). After extracting the results,

we select the best threshold to extract the desired objects (cell

nuclei). Cartilage formation was quantified as percentage of posi-

tive stained area, dividing the Thionin signal intensity in the defect

(glycosaminoglycan deposition) by the defect area of the carti-

lage layer (CL) and the defect area of the subchondral bone (SB)

as measured in full Thionin-stained cross-sections ( n = 5/group,

n = 3sections/sample). Fiji image processing software was used to

identify areas using a protocol previously described [38] . 

For immunohistochemical analysis, deparaffinized sections from

hydrogel samples were probed with mouse anti-human collagen

type 2 antibody (II-II6B3, Developmental Studies Hybridoma Bank,

Iowa City, IA, USA). Antigen retrieval was performed by incubation

in 0.1% pronase (Sigma-Aldrich, Missouri, USA) in PBS for 30 min at

37 °C. Then slides were incubated with 1% hyaluronidase (Sigma-

ldrich) in PBS for 30 min at 37 °C and subsequently with 10%

goat serum (Sigma-Aldrich) to block non-specific binding. The pri-

mary antibody against collagen type 2 (1:100 dilution) or mouse

IgG1 negative control (Serotech Ltd, Oxford, UK) in PBS containing

0.1% BSA was incubated overnight at 4 °C coupled with biotinylated

F(ab)2-labeled goat-anti mouse secondary antibody (#115–0 6 6–

062; Jackson ImmunoResearch Europe) to prevent cross-reaction

with mouse antigens. Excessive primary antibody was captured by

addition of 0.1% normal mouse serum prior to the overnight incu-

bation at 4 °C with the sections. The reaction was catalyzed by an

alkaline-phosphatase-label conjugate (Label, HK-321-UK, Biogenex,

CA, USA) diluted 1:100 in PBS/BSA and visualized by subsequent

incubation of Neu Fuchsin substrate (Chroma, Kongen, Germany).

Slides were counterstained with Haematoxylin. 

2.12. Statistical analysis 

The results were expressed as mean ± standard deviation (SD).

For the 3D spheroids-based migration assay in collagen gel, exper-

iments were performed using 4 different hBMSC donors and trip-

licate per donor, a linear mixed model was used for migratory cell

area data. Multiple comparisons were analysed with Sidak post hoc

test. Conditions and donors were considered as fixed and random

parameters, respectively. Normal distribution of the data or the

residuals of the data were confirmed by both Kolmogorov-Smirnov

and Shapiro–Wilk tests. In the 3D migration assay in HA-hydrogels,

experiments were performed using 3 different donors and tripli-

cate per donor, data were not normally distributed and Kruskal-

allis test was performed. For the quantification of cartilage repair

in the osteochondral samples, experiments were performed using

5 explants per group and 3 sections per sample, statistically signif-

icant differences between untreated and hydrogel treated groups

were determined by one-way ANOVA, Tukey test for multiple com-

parison. All tests were performed using SPSS software. Differences

were considered statistically significant for p < 0.05. 

3. Results 

3.1. Effect of different chemotactic factors on hBMSC spheroids 

migration in hydrogel 

Although monolayer cell migration has commonly been used

for migration studies, recent research shifted toward 3D culture as
 more relevant biochemical and biomechanical microenvironment

39] . Here, we used a spheroid-based migration assay to examine

he effect of chemotactic factors on the migration of hBMSCs.

DFA-SE fluorescently labelled hBMSC spheroids with an average

iameter of 125 μm were generated ( Fig. 1 A), placed on a collagen

ydrogel and cultured in the absence or in the presence of 50 or

00 ng/mL PDGF-BB, RANTES or SDF-1. After 48 h, cell migration

as imaged ( Fig. 1 B). Exposure of SDF-1 (50 and 100 ng/mL),

DGF-BB (50 ng/mL) or RANTES (50 ng/mL) increased hBMSC

igration compared to control ( ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05),

xcept for 100 ng/mL RANTES, although variability among donors

as observed ( Fig. 1 C). These results demonstrate that 50 ng/mL

f PDGF-BB was the most favourable of the tested factors based

n higher tendency to increase among all tested donors. 

.2. PDGF-BB promotes hBMSC migration in FB/HA and HA-Tyr 

ydrogels with different cross-linking densities in vitro 

In terms of physical impediment to 3D cell recruitment, the mi-

ration of CDFA-SE labelled hBMSCs was assessed in HA-Tyr hy-

rogels with different crosslinking densities (HA-Tyr 150, 300 and

00 μM H 2 O 2 ) and FB/HA hydrogels, with or without PDGF-BB ex-

osure, using a 3D spheroid assay. Confocal imaging revealed that

he area of cell migration from the spheroids in all HA hydro-

els progressively increased over three days culture in the pres-

nce of 50 ng/mL PDGF-BB, except for the stiffer HA-Tyr hydrogels

HA-Tyr 600 , Fig. 2 A, B) that showed no migration at all. FB/HA

ydrogels supported the widest cell migration area in presence of

DGF-BB (4-fold increase compared to FB/HA only hydrogels after

2 h; Fig. 2 A, B). In FB/HA gels the cells exhibited spindle-shaped

orphology ( Fig. 2 B), which might have facilitated faster migra-

ion, whereas in HA-Tyr hydrogels (HA-Tyr 150, 300) cells showed

opulations of both spindle and rounded shaped morphology that

ight have reduced the migration ability. The migration in HA-Tyr

ydrogels with different cross-linking density was found to be in-

ersely correlated with the storage modulus of the hydrogel (G’;

uppl. Fig. 2 ). 

Increased migration in the presence of PDGF-BB was observed

t 24 h and 48 h for HA-Tyr hydrogels with lower crosslinking (HA-

yr 150), which were softer and fostered faster migration than

tiffer gels (HA-Tyr 30 0, 60 0; ∗∗p < 0.01 and 

∗∗∗p < 0.0 01 respec-

ively; Fig. 2 A). Based on the mesh size calculation described by

each et al. [40] , and assuming that HA-Tyr had the same den-

ity as HA, the mesh sizes were calculated to be 184.99 ±8.03,

60.60 ±5.04 and 130.85 ±7.04 nm for the HA-Tyr 150, 300 and 600,

espectively. At increased cross-linking density, the mesh size de-

reased according to a decreased swelling ratio (Suppl. Fig. 3A, B),

esulting in a reduced migration kinetic. 

To better mimic the process of hydrogel invasion by endoge-

ous cells, CDFA-SE labelled hBMSCs in suspension were incu-

ated with free-floating HA-based hydrogels, polymerized with or

ithout 100 ng/mL of PDGF-BB, then cultured for 7 days (Suppl.

ig. 4 A). Imaging of the hydrogels at day 7 suggested higher cell

nfiltration in FB/HA hydrogel with PDGF-BB compared to FB/HA

nly. In HA-Tyr hydrogels, cell migration looks to be higher in

resence of the chemokine rather than without and dependent of

rosslinking densities (Suppl. Fig. 4 B). 

.3. HA-based hydrogels support chondrogenesis in vitro 

With the aim to investigate whether FB/HA and HA-Tyr hydro-

els are suitable for cartilage engineering purposes, their ability to

upport chondrogenic capacity of hBMSCs was evaluated. hBMSC-

oaded hydrogels were cultured for 28 days in CCM and gene

xpression at day 0 was used as control; hBMSC differentiation

as further assessed by immunohistochemistry. At day 0 gene
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Fig. 3. The HA-hydrogels support chondrogenesis in vitro . (A) hBMSCs encapsulated in HA-Tyr 150, 30 0, 60 0 and FB/HA hydrogels were cultured for 28 days in chondro- 

genic medium in presence of TGF- β1. Relative mRNA levels of COL2 and ACAN were assessed by qRT-PCR and normalized to GAPDH (2 −�Ct ). Data are from 1 hBMSCs donor 

and presented in triplicate gel samples as means ±SD. ( B) Immunohistochemical staining of collagen type 2 was assessed in all hydrogel groups after 28 days of culture 

in chondrogenic medium in presence of TGF- β1. In FB/HA and HA-Tyr hydrogels the collagen type 2 deposition is presented by the pink staining (black arrows in FB/HA 

hydrogel). IgG isotype controls demonstrate collagen type 2 staining specificity. 20X magnification, scale bar indicates 70 μm. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article). 
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OL2A1 expression was undetectable and ACAN expression was

ery low with Ct values between 34 and 37. The results indicate

hat hBMSC-FB/HA and hBMSC/HA-Tyr-constructs similarly allowed

hondrogenic differentiation, as demonstrated by clear cartilage

arker expression at day 28 ( Fig. 3 A). Immunohistochemical stain-

ng for collagen type 2 confirmed that FB/HA constructs exhibited

reas of newly synthesized matrix and cells with a chondrocyte-

ike morphology ( i.e. rounded and residing within lacunae Fig. 3 B).

nterestingly, collagen type 2 deposition in HA-Tyr hydrogels was

imited to the pericellular space except for HA-Tyr 150 where the

taining was diffuse in the matrix ( Fig. 3 B), indicating an inverse

elationship between the cross-linking density and the extent of

eocartilage tissue deposition. Since improved cell migration and

artilage matrix formation were observed in HA-Tyr hydrogels

ith the lowest cross-linking density, HA-Tyr 150 and FB/HA

ydrogels were selected for further in vivo experiments. 

.4. FB/HA hydrogels improve endogenous cartilage tissue repair in 

n in vivo subcutaneous model 

To evaluate the ability of the selected hydrogels to support en-

ogenous cartilage repair in vivo , osteochondral explants with sim-

lated defects were filled with FB/HA and HA-Tyr, both loaded or

ot with PDGF-BB, and implanted subcutaneously in nude mice

 Fig. 4 A). After 4 weeks, osteochondral explants were collected

nd analyzed by histology. Data revealed differences between the

roups in number of cells colonizing the defect through full-depth

artilage and subchondral bone ( Fig. 4 B, C, Suppl Fig. 5). While

ells were evenly distributed throughout the whole area of FB/HA

els (both cartilage and subchondral zone), cell ingrowth was lim-
ted to the periphery in the vast majority of the HA-Tyr gels

 Fig 4 B). Cell infiltration was significantly higher in the cartilage

ayer and subchondral bone of FB/HA gel group without PDGF-

B compared to HA-Tyr group without PDGF-BB ( ∗p < 0.05 and
∗∗p < 0.001: Fig. 4 C). Scarce cell infiltration was noticed in only

 out of 5 samples in the empty defect group (data not shown).

hen FB/HA and HA-Tyr hydrogels were loaded with PDGF-BB, no

ignificant differences in endogenous cell ingrowth were observed

n comparison to untreated hydrogels ( Fig. 4 C), despite approxi-

ately 35% of PDGF-BB was released in FB/HA after one week in

itro (Suppl. Fig. 6). This suggests that the factor release did not

xert any appreciable effect on migration in the hydrogels ( Fig. 4 B,

). 

In addition to higher cell infiltration in FB/HA gels, cell me-

iated matrix production was significantly enhanced in the carti-

age areas of untreated FB/HA gels in comparison to HA-Tyr gels

 

∗p < 0.05, Fig 4 B, D). The subchondral bone areas showed similar

AG production and no statistical differences were observed. Inter-

stingly, the addition of PDGF-BB to FB/HA gels inhibited cartilage

ormation ( ∗∗p < 0.01, Fig. 4 B, D), while in HA-Tyr gels no significant

ifferences were observed when PDGF-BB was added ( Fig. 4 B, D).

inally, deposition of collagen type 2 in vivo confirmed a similar

attern to GAG deposition ( Fig. 4 E). 

. Discussion 

In this study we compared different types of HA-containing

ydrogels for their capacity to support cell migration and chon-

rogenesis of hBMSC in vitro, and to promote recruitment of

ndogenous cells to the wound site, followed by cartilage repair
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Fig. 4. Improved tissue repair of osteochondral defects filled with HA-based hydrogels in an in vivo subcutaneous tissue model. (A) Scheme of an osteochondral repair 

explant filled with FB/HA and HA-Tyr 150 hydrogel in presence or absence of 1 μg/mL of PDGF-BB, implanted subcutaneously in athymic mice. (B) Representative images of 

the repair constructs stained with Thionin (pink = GAG) showing cells and matrix deposition within the osteochondral defects after 4 weeks of implantation. 10X and 20X 

magnification; scale bars indicate 1 mm and 70 μm, respectively. (C) Cell infiltration (count per mm 

2 ) in the CL and SB layers of the osteochondral defects, ∗p < 0.05, ∗∗p < 0.01 

and ∗∗∗p < 0.001. (D) Percentage of cartilage formation in hydrogels indicated by GAG deposition in CL and SB, ∗p < 0.05 and ∗∗p < 0.01. (E) Representative images of repair 

constructs stained with collagen type 2 by immunohistochemistry after 4 weeks of implantation. 10X magnification; scale bars indicate 1 mm. CL = Cartilage layer; SB = 

Subchondral bone. 
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in an osteochondral defect model in vivo . We showed that the

FB/HA conjugated formulation enhanced a spontaneous cellular

healing response and was more supportive for cartilage repair

compared to the HA-Tyr hydrogel. In addition, the provision of

PDGF-BB, chosen as the most favorable chemotactic agent, did not

increase cell infiltration into the tested hydrogels but impaired

chondrogenesis in vivo . 

Our approach is based on the use of an advanced platform

employed as a pre-clinical tool to screen new biomaterials and

biomolecules for their potential to support endogenous carti-

lage repair. The advantage of this strategy is the application of

more relevant experimental models due to the use of an in vitro

3D spheroids-based migration assay and an osteochondral defect

model, which bring our approach a step closer to physiologically

relevant systems. This could be widely applied to achieve stronger

experimental evidence of the not well-characterized dynamic pro-

cess of cell homing and to uncover the delicate step of early cell

migration into biomaterials. 

The ideal hydrogel should allow cell adhesion, migration and

differentiation to favor the synthesis of extracellular matrix com-

ponents necessary to mimic the native properties of cartilage.
owever, tuning the gels to match not only cartilage composi-

ion and architecture but also mechanical properties to sustain the

oad, may prevent cell ingrowth that is necessary for the first steps

f endogenous tissue repair. Consistent with other in vitro studies

28] , we found that changes in mechanical properties influenced

ell spreading, migration and differentiation. The modulation of

A-Tyr cross-linking degrees (150, 300 and 600 μM H 2 O 2 ), while

eeping HA-Tyr and HRP concentrations constant, was the major

eterminant for both cell migration and matrix synthesis during

BMSC chondrogenesis. 

The resulting hydrogels ranged in storage modulus from 80 to

0 0 0 Pa, which mimics the mechanical properties of certain native

artilaginous tissues like the nucleus pulposus of the intervertebral

isk (3–8 kPa; [41] ), but is lower than the value reported for bovine

dult cartilage (range 30 0–80 0 kPa, [42] ). However, cell migration

as inhibited in HA-Tyr 600 hydrogels, indicating cell spreading

imitations in stiffer highly crosslinked materials [43] . These stiffer

els, however, also have lower mesh size. In general, migration was

trongly dependent on crosslinking, indeed gels with low crosslink

ensity have both lower stiffness and higher mesh size (HA-Tyr

50), and foster faster migration; albeit the migration was always
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ess in HA-Tyr than in FB/HA gels. Despite the similar stiffness (G’)

f FB/HA and HA-Tyr 150, cell migration was profoundly affected

y the different HA concentration as well as by the different net-

ork and the presence of components that improve cell adherence.

To ameliorate cell migration on HA-Tyr hydrogels further cues

ould be implemented, such as the Arg-Gly-Asp (RGD) binding se-

uences to improve the integrin-mediated cell attachment [44] . 

Chondrogenesis occurred in all tested hydrogels, as indicated by

omparable gene expression levels of COL2 and ACAN . While FB/HA,

A-Tyr 150 and 300 hydrogels showed collagen type 2-rich ma-

rix production, HA-Tyr 600 microenvironments showed only peri-

ellular collagen type 2 deposition. Previous works [28] demon-

trated extensive collagen type 2 deposition in the newly formed

A-Tyr matrix. Although G’ values of our gels were much lower

0.08 and 0.45 kPa in HA-Tyr 150 and 300, respectively), this sug-

ests that mechanical stiffness is not the only factor that influences

tem cell fate [45] . It is possible that the higher amount of HA-Tyr

sed to form the hydrogel (3.5% w/v vs 2% w/v) increased its den-

ity, which has been shown to negatively affect matrix deposition

y hBMSCs [46] . Furthermore, the higher concentration may have

ncreased its viscosity, which in turn may have hindered the diffu-

ion of nutrients and growth factors in all the HA-Tyr constructs,

hich is known to influence the effectiveness of hBMSC chondro-

enesis [47] , thereby decreasing GAG deposition. The combination

f those factors may have decreased the ability of those hydrogels

o allow migration and support matrix accumulation. To further

upport our observations, a recent study has shown that increased

A crosslinking density resulted in an overall more restricted ma-

rix distribution, while detecting no statistically significant differ-

nces in collagen type 2 expression among all the groups [48] . 

Consistently with other reports [37 , 49] , we found that PDGF-BB

as the most effective chemoattractant of hBMSCs in hydrogels,

mong the factors tested. PDGF-BB is a well-known mitogen and

e cannot thus completely rule out a contribution of cell prolif-

ration in the 3D spheroid in vitro assay. Nevertheless, cells that

etached from the core were identified as migrating cells and pro-

iferation, which would have increased the size of the core, did not

nfluence this measurement. It should also be considered that both

rocesses are desirable and necessary in a context of endogenous

issue repair in vivo , in order to guarantee proper cell colonization

f the site of injury. 

It is worth noting that the PDGF-BB gradient enhanced short-

erm spheroid migration in vitro (3 days) and improved cell

nfiltration of hydrogels at 7 days of culture in HA-based hydro-

els. Our release study of PDGF-BB over 7 days suggested that

 chemotaxis gradient might have been less pronounced within

A-Tyr hydrogels than with FB/HA gels. Earlier studies exploring

he influence of mechanical strength of HA-Tyr hydrogels on

rotein release demonstrated that release profile of the molecules

epended on mesh size, with the release rate decreasing with

ecrease in mesh size [25] . The higher concentration of HA within

A-Tyr compared to FB/HAhydrogels, however, might also have

ncreased the electrostatic interactions among their hydrophilic

roups and the charged amino acid residues of the PDGF-BB [50] ,

mpeding a sustained delivery. 

Although 3D migration studies can provide valuable infor-

ations, the majority of conventional in vitro hydrogel culture

ystems do not recapitulate the native tissue properties [51] .

urthermore, a recent study demonstrated that the in vitro mi-

roenvironment is not exhaustive to study the applicability of

iomaterials for cartilage repair [52] . Therefore, a fundamental

rerequisite is the testing of 3D cell migration and differentiation

n a more relevant osteochondral-like system, in order to closely

imic a joint-like microenvironment. To validate our in vitro find-

ngs, FB/HA and HA-Tyr 150 hydrogels, with or without PDGF-BB,

ere placed in osteochondral defects in an explant model and
mplanted subcutaneously in vivo . Cellular invasion was evident by

 weeks in both hydrogels, though infiltration was most advanced

n the FB/HA hydrogels, which allowed a uniform distribution of

ells. Interestingly, the bridging tissue in the untreated FB/HA con-

tructs, closing over 85–90% of the osteochondral gap compared

o HA-Tyr hydrogels, resulted also in an increased cartilage matrix

ormation ( ∗p < 0.05 and 

∗∗p < 0.01), and subsequently more colla-

en type 2. A possible explanation for the extensive differences in

ell infiltration between the FB/HA and HA-Tyr hydrogels might be

hat the high fibrin content (FB/HA 3.2:1) favoured binding of cells

o its 3D architecture, and accelerated cell migration in the porous

lots containing hyaluronan [53] . The HA in the FB/HA hydrogels

ay have influenced the behavior and function of cells involved

n the remodeling of the damaged tissue [54] . Whereas the high

ontent of low molecular weight HA (280 kDa) in the HA-Tyr

els may have acted as a barrier to cell adhesion and migration

55] , therefore slowing this process. We also noticed that 2 out

f 5 osteochondral empty defects, implanted as controls, were

artially colonized by cells. Despite the presence of a membrane

atch, it is possible that liquid or blood after surgery reached the

steochondral defects. Indeed, part of the infiltrated cells were red

lood cells. Furthermore, as the bovine explants were harvested

rom calves aged 6–8 months, the young and healthy material is

ikely to provide a favorable environment for repair. 

This study showed a reduction in the size of cartilage lesion

nd enhanced regeneration of the cartilage using FB/HA hydrogels

ithout exposure to growth factor before implantation. Interest-

ngly, addition of PDGF-BB worsened the repair of cartilage. A pre-

ious study on osteochondral repair in a rat model, demonstrated

o significant presence of cartilage matrix deposition when the de-

ect was filled only with PDGF-BB loaded in heparin-conjugated

brin gels [37] . Although this study used higher concentrations of

DGF-BB (8.5 μg/mL and 17 μg/mL) compared to the present study

1μg/mL), these findings are in line with our observations, sug-

esting that the presence of PDGF-BB, although not influencing

ell recruitment, diminished chondrogenic differentiation leading

o more fibrous tissue formation. Future studies will be performed

o evaluate a dose-dependent effect of PDGF-BB on cartilage re-

air after in vivo transplantation and explore the efficacy of other

hemotactic agents [16] . To further improve the quantity or qual-

ty of the matrix produced by the recruited cells, our system can

e functionalized, for example by adding pro-chondrogenic factors

56 , 57] , that can stimulate cartilage formation or inhibit hypertro-

hy. 

Our findings with the osteochondral explant model are par-

ially in line with clinical outcomes of the microfracture procedure

4 , 58] : cells are recruited without supplementation of exogenous

actors and spontaneously generate a cartilaginous tissue, albeit

his is a mixed hyaline/fibrous tissue with non-favorable long

erm outcome. Although the origin of these reparative cells needs

urther analysis, we suppose that the migrating cells are either en-

ogenous stem/progenitor cells from the subchondral bone region,

ither perivascular or bone lining cells, that have differentiated

owards the chondrocyte lineage, since the newly generated tissue

as GAG and collagen type 2 positive. It is clear that the construct

s revascularized upon implantation, meaning a connection is

ade with the mouse system [59] . Hence, we cannot exclude

he presence of cells from murine origin in our plugs. Further

nvestigations of the origin of these cells would be interesting,

lthough this poses significant challenges in discriminating mouse

nd bovine cells in decalcified sections. 

Subcutaneous implantation does not entirely recapitulate the

iarthroidal joint in terms of cellular components, immunologic re-

ponse and mechanical stimuli, it allows only short-term evalua-

ion of cell colonization and matrix production in vivo . To study

he effect of mechanical stimuli to our endogenous cartilage repair
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system, the use of a bioreactor system to simulate physiological

joint kinematics in vitro can be useful [60] . Multiaxial loading was

shown to induce production and activation of transforming growth

factor-beta (TGF- β1), thereby promoting chondrogenesis of BMSCs

[61] . Since the process of endogenous cartilage repair and the in-

volved cell populations are still not well characterized, this system

can be implemented to carry out additional studies including pre-

clinical screening of targeted therapies and biomaterial-based im-

plants. Eventually, the long-term therapeutic effects will need to

be validated in large animal models of osteochondral injury. 

5. Conclusion 

The manuscript emphasizes the application of an advanced bio-

material testing platform to select the most promising hydrogel

to support cell migration and differentiation for cartilage regener-

ation, posing interesting features in the use of FB/HA conjugated

hydrogel, even in the absence of the factor stimulating migration.

Of note, both in vitro and vivo findings indicate that in the FB/HA

hydrogel the use of stimulating factors was not necessary to cre-

ate a local ECM microenvironment amenable for endogenous cell

recruitment in both cartilage and bone layers. Particular consid-

eration should be given on creating an environment where cues

may be introduced to stimulate matrix deposition and improve

the quality of the newly-formed cartilage, e.g. by silencing anti-

chondrogenic factors [62] , and promote proper collagen fiber align-

ment [63] . Combination of these processes will lead to an ideal

situation where different but complementary regulators create an

optimal microenvironment for cartilage repair. 
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