160 research outputs found

    Characterization of anisotropic nano-particles by using depolarized dynamic light scattering in the near field

    Full text link
    Light scattering techniques are widely used in many fields of condensed and sof t matter physics. Usually these methods are based on the study of the scattered light in the far field. Recently, a new family of near field detection schemes has been developed, mainly for the study of small angle light scattering. These techniques are based on the detection of the light intensity near to the sample, where light scattered at different directions overlaps but can be distinguished by Fourier transform analysis. Here we report for the first time data obtained with a dynamic near field scattering instrument, measuring both polarized and depolarized scattered light. Advantages of this procedure over the traditional far field detection include the immunity to stray light problems and the possibility to obtain a large number of statistical samples for many different wave vectors in a single instantaneous measurement. By using the proposed technique we have measured the translational and rotational diffusion coefficients of rod-like colloidal particles. The obtained data are in very good agreement with the data acquired with a traditional light scattering apparatus.Comment: Published in Optics Express. This version has changes in bibliograph

    Interference fit effect on holed single plates loaded with tension-tension stresses

    Get PDF
    This paper deals with the influence of interference fit coupling on the fatigue strength of holed plates. The effect was investigated both experimentally and numerically. Axial fatigue tests have been carried out on holed specimens made of high performance steel (1075MPa of Ultimate strength and 990MPa of Yield strength) with or without a pin, made of the same material, press fitted into their central hole. Three different conditions have been investigated: free hole specimens, specimens with 0.6% of nominal specific interference and specimens with 2% of nominal specific interference. The experimental stress-life (S–N) curves pointed out an increased fatigue life of the interference fit specimens compared with the free hole ones. The numericalinvestigation was performed in order to analyse the stress fields by applying an elastic plastic 2D simulation witha commercial Finite Element software. The stress history and distribution along the contact interference of the fitted samples indicates a significant reduction of the local stress range due to the externally applied loading (remote stress) since a residual and compressive stress field is generated by the pin insertion

    Design and Optimization of a Pneumatic Clamping System for Direct-Driven Rotary Tables

    Get PDF
    Modern direct-driven and high-speed rotary tables with torque motor are optimally suited for all handling and assembly applications that require the shortest indexing times and flexible positioning. The following paper is devoted to the study, the design, and the optimization of an innovative table clamping system (brake for accurate positioning) actuated by pneumatic energy, working at a maximum clamping pressure of 6 bar. The challenge for the aforementioned application is related to developing a solution able to provide a maximum tangential torque (with clamping actuated) in the range of thousands of Nm without leveraging the use of high-pressure hydraulic energy. The optimization of the proposed solution is based on the precise calculation of the stresses in order to perform a fatigue assessment and on the elastic deformation of the clamps in order to set the correct tolerances between the mating parts. Eventually, an experimental campaign is carried out in order to tune the numerical model, which is then used to validate the proposed design solution

    Photon correlation spectroscopy with incoherent light

    Full text link
    Photon correlation spectroscopy (PCS) is based on measuring the temporal correlation of the light intensity scattered by the investigated sample. A typical setup requires a temporally coherent light source. Here, we show that a short-coherence light source can be used as well, provided that its coherence properties are suitably modified. This results in a "skewed-coherence" light beam allowing that restores the coherence requirements. This approach overcomes the usual need for beam filtering, which would reduce the total brightness of the beam.Comment: 4 pages, 4 figure

    Effects of Machining on the Fatigue Strength of Steel Components Produced by DMLS

    Get PDF
    Direct metal laser sintering (DMLS) is the additive manufacturing (AM) technology that allows production of metal machine components with complex geometry. Due to the layer-wise production principle, its products usually require post-processing, predominantly machining, to achieve uniform or requested surface quality. Given the increasing application of DMLS technology in industry and insufficient published data about the effects of machining on the fatigue properties of steel, the focus of this research is put to investigation of the influence of thickness of allowance for machining to fatigue strength of DMLS products. Previous studies revealed significant differences in the mechanical behaviour of samples made of different kinds of steels, both during production and testing. Unlike the samples made from maraging steel, the samples made from stainless steel often deformed during cooling due to the strong residual stresses, and revealed dependence of mechanical properties on orientation during production process. To improve the understanding of the differences, fatigue testing according to ISO 1143 was performed on samples manufactured from two kinds of steel, maraging steel 1.2709 and stainless steel 15-5. Twelve sets of samples were tested with the aim to investigate the effects of machining allowance and build orientation according to an extensive DoE experimental plan.The authors wish to acknowledge the support of European Commission through the project “Advanced design rules for optimal dynamic properties of additive manufacturing products – A_MADAM”, which has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 734455.Publishe
    corecore