13 research outputs found

    Spatial and Temporal Evolution of Different‐Scale Ionospheric Irregularities in Central and East Siberia During the 27–28 May 2017 Geomagnetic Storm

    Get PDF
    We present a multi-instrumental study of ionospheric irregularities of different scales (from tens of centimeters to few kilometers) observed over the Central and East Siberia, Russia, during a moderate-to-strong geomagnetic storm on 27–28 May 2017. From high-frequency (HF) and ultrahigh-frequency (UHF) radar data, we observed an intense auroral backscatter developed right after the initial phase of the geomagnetic storm. Additionally, we examined variations of Global Positioning System (GPS)-based ROT (rate of TEC changes, where TEC is total electron content) for available GPS receivers in the region. Ionosondes, HF, and UHF radar data exhibited a presence of intense multi-scale ionospheric irregularities. We revealed a correlation between different-scale Auroral/Farley-Buneman ionospheric irregularities of the E layer during the geomagnetic storm. The combined analysis showed that an area of intense irregularities is well connected and located slightly equatorward to field-aligned currents (FACs) and auroral oval at different stages of the geomagnetic storm. An increase and equatorward displacement of Region 1 (R1)/Region 2 (R2) FACs leads to appearance and equatorward expansion of ionospheric irregularities. During downward (upward) R1 FAC and upward (downward) R2 FAC, the eastward and upward (westward and downward) E × B drift of ionospheric irregularities occurred. Simultaneous disappearance of UHF/HF auroral backscatter and GPS ROT decrease occurred during a prolonged near noon reversal of R1 and R2 FAC directions that accompanied by R1/R2 FAC degradation and disappearance of high-energy auroral precipitation

    Waveguide Modes in the AKR Source. Planetary Radio Emissions| PLANETARY RADIO EMISSIONS VII 7|

    No full text
    The Auroral Kilometric Radiation (AKR) was investigated on measurements in the POLRAD experiment on the INTERBALL-2 satellite. It was revealed ”lowfrequency” radiation with specific features in a spectrum on a polar edge of the auroral region. We have obtained that a series of narrow-band splashes are observed at frequencies between 35 and 70 kHz with the period modulation some tens seconds and bow-shaped envelope. Possible interpretation of emission generation with a specific spectrum is discussed. We suppose that increase of intensity at small frequencies is interpreted as crossing by the satellite of the source region and observation of waveguide modes within it

    Thermal ion measurements on board Interball Auroral Probe by the Hyperboloid experiment

    No full text
    International audienceHyperboloid is a multi-directional mass spectrometer measuring ion distribution functions in the auroral and polar magnetosphere of the Earth in the thermal and suprathermal energy range. The instrument encompasses two analyzers containing a total of 26 entrance windows, and viewing in two almost mutually perpendicular half-planes. The nominal angular resolution is defined by the field of view of individual windows ˜13° × 12.5°. Energy analysis is performed using spherical electrostatic analyzers providing differential measurements between 1 and 80 eV. An ion beam emitter (RON experiment) and/or a potential bias applied to Hyperboloid entrance surface are used to counteract adverse effects of spacecraft potential and thus enable ion measurements down to very low energies. A magnetic analyzer focuses ions on one of four micro-channel plate (MCP) detectors, depending on their mass/charge ratio. Normal modes of operation enable to measure H+, He+, O++, and O+ simultaneously. An automatic MCP gain control software is used to adapt the instrument to the great flux dynamics encountered between spacecraft perigee (700 km) and apogee (20 000 km). Distribution functions in the main analyzer half-plane are obtained after a complete scan of windows and energies with temporal resolution between one and a few seconds. Three-dimensional (3D) distributions are measured in one spacecraft spin period (120 s). The secondary analyzer has a much smaller geometrical factor, but offers partial access to the 3D dependence of the distributions with a few seconds temporal resolution. Preliminary results are presented. Simultaneous, local heating of both H+ and O+ ions resulting in conical distributions below 80 eV is observed up to 3 Earth's radii altitudes. The thermal ion signatures associated with large-scale nightside magnetospheric boundaries are investigated and a new ion outflow feature is identified associated to the polar edge of the auroral oval. Detailed distribution functions of injected magnetosheath ions and ouflowing cleft fountain ions are measured down to a few eVs in the dayside
    corecore