214 research outputs found

    Atlas of High Resolution Infrared Spectra of Carbon Dioxide: February 1984 Edition

    Get PDF
    Long-path, low-pressure laboratory absorption spectra of carbon dioxide i are presented in an atlas format for the spectral regions 1830 to 2100 cm , 2395 to 2680 cm-I i , and 3140 to 3235 cm- . The data were recorded at 0.01 cm I resolution and room temperature with the Fourier transform spectrometer in the McMath solar telescope complex of the National Solar Observatory at Kitt Peak. A list of positions and assignments is given for the 3336 lines observed. A total of 52 bands of 12C1602, 13C1602, 12C160180, 12C160170, and 13C160180 have been identified

    Slow Down

    Get PDF

    HALOE Science Investigation

    Get PDF
    This cooperative agreement has investigated a number of spectroscopic problems of interest to the Halogen Occultation Experiment (HALOE). The types of studies performed are in two parts, namely, those that involve the testing and characterization of correlation spectrometers and those that provide basic molecular spectroscopic information. In addition, some solar studies were performed with the calibration data returned by HALOE from orbit. In order to accomplish this a software package was written as part of this cooperative agreement. The HALOE spectroscopic instrument package was used in various tests of the HALOE flight instrument. These included the spectral response test, the early stages of the gas response test and various spectral response tests of the detectors and optical elements of the instruments. Considerable effort was also expended upon the proper laboratory setup for many of the prelaunch tests of the HALOE flight instrument, including the spectral response test and the gas response test. These tests provided the calibration and the assurance that the calibration was performed correctly

    Broadening, shifting, and line asymmetries in the 2ā†0 band of CO and COā€“N2: Experimental results and theoretical calculations

    Get PDF
    We have measured the room temperature, widths, pressure shifts, and line asymmetry coefficients for many transitions of the first overtone band of CO and CO perturbed by N2. role= presentation style= display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px 2px 0px 0px; margin: 0px; position: relative; \u3eN2.N2. The broadening coefficients were obtained with an accuracy of about 1%. The pure CO profiles have been fitted by a Voigt profile while the COā€“N2 role= presentation style= display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px 2px 0px 0px; margin: 0px; position: relative; \u3eCOā€“N2COā€“N2 spectral profiles have been fitted with a Lorentz and an empirical line shape model (HCv) role= presentation style= display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px 2px 0px 0px; margin: 0px; position: relative; \u3e(HCv)(HCv) that blends together a hard collision model and a speed-dependent Lorentz profile. In addition to the Voigt, Lorentz, and HCv role= presentation style= display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px 2px 0px 0px; margin: 0px; position: relative; \u3eHCvHCv models, we have added a dispersion profile to account for weak line mixing. The line broadening and shift coefficients are compared to semiclassical calculations employing a variety of intermolecular interactions.The line asymmetry results are compared to line mixing calculations based on the energy corrected sudden (ECS) model.The results indicate that effects other than line mixing also contribute to the measured line asymmetry

    Line Parameters including Temperature Dependences of Air- and Self-broadened Line Shapes of (CO2)-C-12-O-16: 2.06-mu m Region

    Get PDF
    This study reports the results from analyzing a number of high resolution, high signal-to-noise ratio (S/N) spectra in the 2.06-Ī¼m spectral region for pure CO2 and mixtures of CO2 in dry air. A multispectrum nonlinear least squares curve fitting technique has been used to retrieve the various spectral line parameters. The dataset includes 27 spectra: ten pure CO2, two 99% 13C-enriched CO2 and fifteen spectra of mixtures of 12C-enriched CO2 in dry air. The spectra were recorded at various gas sample temperatures between 170 and 297 K. The absorption path lengths range from 0.347 to 49 m. The sample pressures for the pure CO2 spectra varied from 1.1 to 594 Torr; for the two 13CO2 spectra the pressures were āˆ¼10 and 146 Torr. For the air-broadened spectra, the pressures of the gas mixtures varied between 200 and 711 Torr with CO2 volume mixing ratios ranging from 0.014% to 0.203%. The multispectrum fitting technique was applied to fit simultaneously all these spectra to retrieve consistent set of line positions, intensities, and line shape parameters including their temperature dependences; for this, the Voigt line shape was modified to include line mixing (via the relaxation matrix formalism) and quadratic speed dependence. The new results are compared to select published values, including recent ab initio calculations. These results are required to retrieve the column averaged dry air mole fraction (XCO2) from space-based observations, such as the Orbiting Carbon Observatory-2 (OCO-2) satellite mission that NASA launched in July 2014

    Multispectrum Analysis of 12CH4 in the v4 Band: I. Air-Broadened Half Widths, Pressure-Induced Shifts, Temperature Dependences and Line Mixing

    Get PDF
    Lorentz air-broadened half widths, pressure-induced shifts and their temperature dependences have been measured for over 430 transitions (allowed and forbidden) in the v4 band of (CH4)-12 over the temperature range 210 to 314 K. A multispectrum non linear least squares fitting technique was used to simultaneously fit a large number of high-resolution (0.006 to 0.01/cm) absorption spectra of pure methane and mixtures of methane diluted with dry air. Line mixing was detected for pairs of A-, E-, and F-species transitions in the P- and R-branch manifolds and quantified using the off-diagonal relaxation matrix elements formalism. The measured parameters are compared to air- and N2-broadened values reported in the literature for the v4 and other bands. The dependence of the various spectral line parameters upon the tetrahedral symmetry species and rotational quantum numbers of the transitions is discussed. All data used in the present work were recorded using the McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory on Kitt Peak

    The HITRAN 2008 molecular spectroscopic database

    Get PDF
    This paper describes the status of the 2008 edition of the HITRAN molecular spectroscopic database. The new edition is the first official public release since the 2004 edition, although a number of crucial updates had been made available online since 2004. The HITRAN compilation consists of several components that serve as input for radiative-transfer calculation codes: individual line parameters for the microwave through visible spectra of molecules in the gas phase; absorption cross-sections for molecules having dense spectral features, i.e. spectra in which the individual lines are not resolved; individual line parameters and absorption cross-sections for bands in the ultraviolet; refractive indices of aerosols, tables and files of general properties associated with the database; and database management software. The line-by-line portion of the database contains spectroscopic parameters for 42 molecules including many of their isotopologues. (c) 2009 Elsevier Ltd. All rights reserved

    The HITRAN2012 molecular spectroscopic database

    Get PDF
    This paper describes the status of the 2012 edition of the HITRAN molecular spectroscopic compilation. The new edition replaces the previous HITRAN edition of 2008 and its updates during the intervening years. The HITRAN molecular absorption compilation is comprised of six major components structured into folders that are freely accessible on the internet. These folders consist of the traditional line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, infrared absorption cross-sections for molecules not yet amenable to representation in a line-by-line form, ultraviolet spectroscopic parameters, aerosol indices of refraction, ision-induced absorption data, and general tables such as partition sums that apply globally to the data. The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, and validity. Molecules and isotopologues have been added that address the issues of atmospheres beyond the Earth. Also discussed is a new initiative that casts HITRAN into a relational database format that offers many advantages over the long-standing sequential text-based structure that has existed since the initial release of HITRAN in the early 1970s. (C) 2013 Elsevier Ltd. All rights reserved

    Atmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2 mission

    Get PDF
    We describe atmospheric validation of 1.61 mu m and 2.06 mu m CO2 absorption coefficient databases for use by the Orbiting Carbon Observatory (OCO-2). The OCO-2 mission will collect the measurements needed to estimate column-averaged CO2 similar to dry air mole fraction within 1 ppm accuracy without the region- or airmass-dependent biases that would significantly degrade efforts to understand carbon sources and sinks on a global scale. To accomplish this, the forward radiative transfer model used to generate synthetic atmospheric spectra for retrievals must achieve unprecedented spectroscopic fidelity within the short wave infrared CO2 bands sampled by the sensors. The failure of Voigt line shapes and conventional line mixing formulations for such objectives has motivated significant revisions to line shape models used to generate the gas absorption cross sections for the OCO-2 forward model. In this paper, we test line mixing and speed dependent line shapes combined with improved experimental line parameters. We evaluate pre-computed absorption coefficients in the two spectral regions of CO2 absorbtion using high resolution FT-IR laboratory spectra, atmospheric spectra from the Total Carbon Column Observing Network (TCCON), and medium resolution soundings from the space-based Greenhouse Gases Observing Satellite (GOSAT). (C) 2012 Elsevier Ltd. All rights reserved
    • ā€¦
    corecore