7,082 research outputs found

    Electrodes for sealed secondary batteries

    Get PDF
    Self-supporting membrane electrode structures, in which active ingredients and graphite are incorporated in a polymeric matrix, improve performance of electrodes in miniature, sealed, alkaline storage batteries

    Long-term performance modelling of a combined energy generation system

    Get PDF
    The installation of the combined energy generation system at West Beacon Farm, Loughborough, Leicestershire commenced in 1988, since when it has steadily grown in both generating capacity and operating complexity. It now consists of three electrical generating sources: two 25kW fixed speed horizontal axis wind turbines, a 6kWp photovoltaic array consisting of both monocrystalline and polycrystalline cells and a 15kW combined heat and power unit which also provides 38kW of thermal energy. Electricity is stored in a 184kWh lead acid battery, and also imported and exported from the grid. Previous research on the system was limited, due to lack of detailed system information and time. Therefore the aim of this research project has been to develop a more detailed and accurate computer model of the system that enables the present operating strategy to be evaluated, together with the effects on the system of changing this strategy. The outcome will be to optimize the generating cost and to provide a model with the flexibility to investigate the conditions in other hybrid systems. [Continues.

    Aerodynamic configuration development of the highly maneuverable aircraft technology remotely piloted research vehicle

    Get PDF
    The aerodynamic development of the highly maneuverable aircraft technology remotely piloted research vehicle (HiMAT/RPRV) from the conceptual design to the final configuration is presented. The design integrates several advanced concepts to achieve a high degree of transonic maneuverability, and was keyed to sustained maneuverability goals while other fighter typical performance characteristics were maintained. When tests of the baseline configuration indicated deficiencies in the technology integration and design techniques, the vehicle was reconfigured to satisfy the subcritical and supersonic requirements. Drag-due-to-lift levels only 5 percent higher than the optimum were obtained for the wind tunnel model at a lift coefficient of 1 for Mach numbers of up to 0.8. The transonic drag rise was progressively lowered with the application of nonlinear potential flow analyses coupled with experimental data

    Sewing sound quantum flesh onto classical bones

    Full text link
    Semiclassical transformation theory implies an integral representation for stationary-state wave functions ψm(q)\psi_m(q) in terms of angle-action variables (θ,J\theta,J). It is a particular solution of Schr\"{o}dinger's time-independent equation when terms of order 2\hbar^2 and higher are omitted, but the pre-exponential factor A(q,θ)A(q,\theta) in the integrand of this integral representation does not possess the correct dependence on qq. The origin of the problem is identified: the standard unitarity condition invoked in semiclassical transformation theory does not fix adequately in A(q,θ)A(q,\theta) a factor which is a function of the action JJ written in terms of qq and θ\theta. A prescription for an improved choice of this factor, based on succesfully reproducing the leading behaviour of wave functions in the vicinity of potential minima, is outlined. Exact evaluation of the modified integral representation via the Residue Theorem is possible. It yields wave functions which are not, in general, orthogonal. However, closed-form results obtained after Gram-Schmidt orthogonalization bear a striking resemblance to the exact analytical expressions for the stationary-state wave functions of the various potential models considered (namely, a P\"{o}schl-Teller oscillator and the Morse oscillator).Comment: RevTeX4, 6 page

    Role of community pharmacists in the use of antipsychotics for behavioural and psychological symptoms of dementia (BPSD): A qualitative study

    Get PDF
    Objective This study aimed to use qualitative methodology to understand the current role of community pharmacists in limiting the use of antipsychotics prescribed inappropriately for behavioural and psychological symptoms of dementia. Design A qualitative study employing focus groups was conducted. Data were analysed using thematic analysis. Setting 3 different geographical locations in the England. Participants Community pharmacists (n=22). Results The focus groups identified an array of factors and constraints, which affect the ability of community pharmacists to contribute to initiatives to limit the use of antipsychotics. 3 key themes were revealed: (1) politics and the medical hierarchy, which created communication barriers; (2) how resources and remit impact the effectiveness of community pharmacy; and (3) understanding the nature of the treatment of dementia. Conclusions Our findings suggest that an improvement in communication between community pharmacists and healthcare professionals, especially general practitioners (GPs) must occur in order for community pharmacists to assist in limiting the use of antipsychotics in people with dementia. Additionally, extra training in working with people with dementia is required. Thus, an intervention which involves appropriately trained pharmacists working in collaboration with GPs and other caregivers is required. Overall, within the current environment, community pharmacists question the extent to which they can contribute in helping to reduce the prescription of antipsychotics

    Measuring nonadiabaticity of molecular quantum dynamics with quantum fidelity and with its efficient semiclassical approximation

    Full text link
    We propose to measure nonadiabaticity of molecular quantum dynamics rigorously with the quantum fidelity between the Born-Oppenheimer and fully nonadiabatic dynamics. It is shown that this measure of nonadiabaticity applies in situations where other criteria, such as the energy gap criterion or the extent of population transfer, fail. We further propose to estimate this quantum fidelity efficiently with a generalization of the dephasing representation to multiple surfaces. Two variants of the multiple-surface dephasing representation (MSDR) are introduced, in which the nuclei are propagated either with the fewest-switches surface hopping (FSSH) or with the locally mean field dynamics (LMFD). The LMFD can be interpreted as the Ehrenfest dynamics of an ensemble of nuclear trajectories, and has been used previously in the nonadiabatic semiclassical initial value representation. In addition to propagating an ensemble of classical trajectories, the MSDR requires evaluating nonadiabatic couplings and solving the Schr\"{o}dinger (or more generally, the quantum Liouville-von Neumann) equation for a single discrete degree of freedom. The MSDR can be also used to measure the importance of other terms present in the molecular Hamiltonian, such as diabatic couplings, spin-orbit couplings, or couplings to external fields, and to evaluate the accuracy of quantum dynamics with an approximate nonadiabatic Hamiltonian. The method is tested on three model problems introduced by Tully, on a two-surface model of dissociation of NaI, and a three-surface model including spin-orbit interactions. An example is presented that demonstrates the importance of often-neglected second-order nonadiabatic couplings.Comment: 14 pages, 4 figures, submitted to J. Chem. Phy

    Design and analysis of a supersonic penetration/maneuvering fighter

    Get PDF
    The design of three candidate air combat fighters which would cruise effectively at freestream Mach numbers of 1.6, 2.0, and 2.5 while maintaining good transonic maneuvering capability, is considered. These fighters were designed to deliver aerodynamically controlled dogfight missiles at the design Mach numbers. Studies performed by Rockwell International in May 1974 and guidance from NASA determined the shape and size of these missiles. The principle objective of this study is the aerodynamic design of the vehicles; however, configurations are sized to have realistic structures, mass properties, and propulsion systems. The results of this study show that air combat fighters in the 15,000 to 23,000 pound class would cruise supersonically on dry power and still maintain good transonic maneuvering performance

    The method of Gaussian weighted trajectories. V. On the 1GB procedure for polyatomic processes

    Full text link
    In recent years, many chemical reactions have been studied by means of the quasi-classical trajectory (QCT) method within the Gaussian binning (GB) procedure. The latter consists in "quantizing" the final vibrational actions in Bohr spirit by putting strong emphasis on the trajectories reaching the products with vibrational actions close to integer values. A major drawback of this procedure is that if N is the number of product vibrational modes, the amount of trajectories necessary to converge the calculations is ~ 10^N larger than with the standard QCT method. Applying it to polyatomic processes is thus problematic. In a recent paper, however, Czako and Bowman propose to quantize the total vibrational energy instead of the vibrational actions [G. Czako and J. M. Bowman, J. Chem. Phys., 131, 244302 (2009)], a procedure called 1GB here. The calculations are then only ~ 10 times more time-consuming than with the standard QCT method, allowing thereby for considerable numerical saving. In this paper, we propose some theoretical arguments supporting the 1GB procedure and check its validity on model test cases as well as the prototype four-atom reaction OH+D_2 -> HOD+D

    Power loss in open cavity diodes and a modified Child Langmuir Law

    Full text link
    Diodes used in most high power devices are inherently open. It is shown that under such circumstances, there is a loss of electromagnetic radiation leading to a lower critical current as compared to closed diodes. The power loss can be incorporated in the standard Child-Langmuir framework by introducing an effective potential. The modified Child-Langmuir law can be used to predict the maximum power loss for a given plate separation and potential difference as well as the maximum transmitted current for this power loss. The effectiveness of the theory is tested numerically.Comment: revtex4, 11 figure
    corecore