839 research outputs found

    Is the New Resonance Spin 0 or 2? Taking a Step Forward in the Higgs Boson Discovery

    Full text link
    The observation of a new boson of mass \sim 125\gev at the CERN LHC may finally have revealed the existence of a Higgs boson. Now we have the opportunity to scrutinize its properties, determining its quantum numbers and couplings to the standard model particles, in order to confirm or not its discovery. We show that by the end of the 8 TeV run, combining the entire data sets of ATLAS and CMS, it will be possible to discriminate between the following discovery alternatives: a scalar JP=0+J^P=0^+ or a tensor JP=2+J^P=2^+ particle with minimal couplings to photons, at a 5σ5\sigma statistical confidence level at least, using only diphotons events. Our results are based on the calculation of a center-edge asymmetry measure of the reconstructed {\it sPlot} scattering polar angle of the diphotons. The results based on asymmetries are shown to be rather robust against systematic uncertainties with comparable discrimination power to a log likelihood ratio statistic.Comment: 11 pages, 6 figures, 1 table. References added, minor typos correcte

    A novel approach to study realistic navigations on networks

    Get PDF
    We consider navigation or search schemes on networks which are realistic in the sense that not all search chains can be completed. We show that the quantity μ=ρ/sd\mu = \rho/s_d, where sds_d is the average dynamic shortest distance and ρ\rho the success rate of completion of a search, is a consistent measure for the quality of a search strategy. Taking the example of realistic searches on scale-free networks, we find that μ\mu scales with the system size NN as NδN^{-\delta}, where δ\delta decreases as the searching strategy is improved. This measure is also shown to be sensitive to the distintinguishing characteristics of networks. In this new approach, a dynamic small world (DSW) effect is said to exist when δ0\delta \approx 0. We show that such a DSW indeed exists in social networks in which the linking probability is dependent on social distances.Comment: Text revised, references added; accepted version in Journal of Statistical Mechanic

    Proximity Drawings of High-Degree Trees

    Full text link
    A drawing of a given (abstract) tree that is a minimum spanning tree of the vertex set is considered aesthetically pleasing. However, such a drawing can only exist if the tree has maximum degree at most 6. What can be said for trees of higher degree? We approach this question by supposing that a partition or covering of the tree by subtrees of bounded degree is given. Then we show that if the partition or covering satisfies some natural properties, then there is a drawing of the entire tree such that each of the given subtrees is drawn as a minimum spanning tree of its vertex set

    Pseudospin-Resolved Transport Spectroscopy of the Kondo Effect in a Double Quantum Dot

    Full text link
    We report measurements of the Kondo effect in a double quantum dot (DQD), where the orbital states act as pseudospin states whose degeneracy contributes to Kondo screening. Standard transport spectroscopy as a function of the bias voltage on both dots shows a zero-bias peak in conductance, analogous to that observed for spin Kondo in single dots. Breaking the orbital degeneracy splits the Kondo resonance in the tunneling density of states above and below the Fermi energy of the leads, with the resonances having different pseudospin character. Using pseudospin-resolved spectroscopy, we demonstrate the pseudospin character by observing a Kondo peak at only one sign of the bias voltage. We show that even when the pseudospin states have very different tunnel rates to the leads, a Kondo temperature can be consistently defined for the DQD system.Comment: Text and supplementary information. Text: 4 pages, 5 figures. Supplementary information: 4 pages, 4 figure

    Asymptotic behavior of the Kleinberg model

    Full text link
    We study Kleinberg navigation (the search of a target in a d-dimensional lattice, where each site is connected to one other random site at distance r, with probability proportional to r^{-a}) by means of an exact master equation for the process. We show that the asymptotic scaling behavior for the delivery time T to a target at distance L scales as (ln L)^2 when a=d, and otherwise as L^x, with x=(d-a)/(d+1-a) for ad+1. These values of x exceed the rigorous lower-bounds established by Kleinberg. We also address the situation where there is a finite probability for the message to get lost along its way and find short delivery times (conditioned upon arrival) for a wide range of a's

    Search in Complex Networks : a New Method of Naming

    Full text link
    We suggest a method for routing when the source does not posses full information about the shortest path to the destination. The method is particularly useful for scale-free networks, and exploits its unique characteristics. By assigning new (short) names to nodes (aka labelling) we are able to reduce significantly the memory requirement at the routers, yet we succeed in routing with high probability through paths very close in distance to the shortest ones.Comment: 5 pages, 4 figure

    Transport in networks with multiple sources and sinks

    Full text link
    We investigate the electrical current and flow (number of parallel paths) between two sets of n sources and n sinks in complex networks. We derive analytical formulas for the average current and flow as a function of n. We show that for small n, increasing n improves the total transport in the network, while for large n bottlenecks begin to form. For the case of flow, this leads to an optimal n* above which the transport is less efficient. For current, the typical decrease in the length of the connecting paths for large n compensates for the effect of the bottlenecks. We also derive an expression for the average flow as a function of n under the common limitation that transport takes place between specific pairs of sources and sinks

    Defect formation and local gauge invariance

    Get PDF
    We propose a new mechanism for formation of topological defects in a U(1) model with a local gauge symmetry. This mechanism leads to definite predictions, which are qualitatively different from those of the Kibble-Zurek mechanism of global theories. We confirm these predictions in numerical simulations, and they can also be tested in superconductor experiments. We believe that the mechanism generalizes to more complicated theories.Comment: REVTeX, 4 pages, 2 figures. The explicit form of the Hamiltonian and the equations of motion added. To appear in PRL (http://prl.aps.org/

    Limited path percolation in complex networks

    Full text link
    We study the stability of network communication after removal of q=1pq=1-p links under the assumption that communication is effective only if the shortest path between nodes ii and jj after removal is shorter than aij(a1)a\ell_{ij} (a\geq1) where ij\ell_{ij} is the shortest path before removal. For a large class of networks, we find a new percolation transition at p~c=(κo1)(1a)/a\tilde{p}_c=(\kappa_o-1)^{(1-a)/a}, where κo/\kappa_o\equiv / and kk is the node degree. Below p~c\tilde{p}_c, only a fraction NδN^{\delta} of the network nodes can communicate, where δa(1logp/log(κo1))<1\delta\equiv a(1-|\log p|/\log{(\kappa_o-1)}) < 1, while above p~c\tilde{p}_c, order NN nodes can communicate within the limited path length aija\ell_{ij}. Our analytical results are supported by simulations on Erd\H{o}s-R\'{e}nyi and scale-free network models. We expect our results to influence the design of networks, routing algorithms, and immunization strategies, where short paths are most relevant.Comment: 11 pages, 3 figures, 1 tabl

    The evolution of interdisciplinarity in physics research

    Get PDF
    Science, being a social enterprise, is subject to fragmentation into groups that focus on specialized areas or topics. Often new advances occur through cross-fertilization of ideas between sub-fields that otherwise have little overlap as they study dissimilar phenomena using different techniques. Thus to explore the nature and dynamics of scientific progress one needs to consider the large-scale organization and interactions between different subject areas. Here, we study the relationships between the sub-fields of Physics using the Physics and Astronomy Classification Scheme (PACS) codes employed for self-categorization of articles published over the past 25 years (1985-2009). We observe a clear trend towards increasing interactions between the different sub-fields. The network of sub-fields also exhibits core-periphery organization, the nucleus being dominated by Condensed Matter and General Physics. However, over time Interdisciplinary Physics is steadily increasing its share in the network core, reflecting a shift in the overall trend of Physics research.Comment: Published version, 10 pages, 8 figures + Supplementary Informatio
    corecore