We investigate the electrical current and flow (number of parallel paths)
between two sets of n sources and n sinks in complex networks. We derive
analytical formulas for the average current and flow as a function of n. We
show that for small n, increasing n improves the total transport in the
network, while for large n bottlenecks begin to form. For the case of flow,
this leads to an optimal n* above which the transport is less efficient. For
current, the typical decrease in the length of the connecting paths for large n
compensates for the effect of the bottlenecks. We also derive an expression for
the average flow as a function of n under the common limitation that transport
takes place between specific pairs of sources and sinks