39 research outputs found

    Structural basis for the photoconversion of a phytochrome to the activated far-red light-absorbing form

    Get PDF
    Phytochromes are a collection of bilin-containing photoreceptors that regulate numerous photoresponses in plants and microorganisms through their ability to photointerconvert between a red light-absorbing, ground state Pr and a far-red light-absorbing, photoactivated state Pfr1,2. While the structures of several phytochromes as Pr have been determined3-7, little is known about the structure of Pfr and how it initiates signaling. Here, we describe the three-dimensional solution structure of the bilin-binding domain as Pfr using the cyanobacterial phytochrome from Synechococcus OSB’. Contrary to predictions, light-induced rotation of the A but not the D pyrrole ring is the primary motion of the chromophore during photoconversion. Subsequent rearrangements within the protein then affect intra- and interdomain contact sites within the phytochrome dimer. From our models, we propose that phytochromes act by propagating reversible light-driven conformational changes in the bilin to altered contacts between the adjacent output domains, which in most phytochromes direct differential phosphotransfer

    Heterogeneous localisation of membrane proteins in Staphylococcus aureus

    Get PDF
    The bacterial cytoplasmic membrane is the interface between the cell and its environment, with multiple membrane proteins serving its many functions. However, how these proteins are organised to permit optimal physiological processes is largely unknown. Based on our initial findings that 2 phospholipid biosynthetic enzymes (PlsY and CdsA) localise heterogeneously in the membrane of the bacterium Staphylococcus aureus, we have analysed the localisation of other key membrane proteins. A range of protein fusions were constructed and used in conjunction with quantitative image analysis. Enzymes involved in phospholipid biosynthesis as well as the lipid raft marker FloT exhibited a heterogeneous localisation pattern. However, the secretion associated SecY protein, was more homogeneously distributed in the membrane. A FRET-based system also identified novel colocalisation between phospholipid biosynthesis enzymes and the respiratory protein CydB revealing a likely larger network of partners. PlsY localisation was found to be dose dependent but not to be affected by membrane lipid composition. Disruption of the activity of the essential cell division organiser FtsZ, using the inhibitor PC190723 led to loss of PlsY localisation, revealing a link to cell division and a possible role for FtsZ in functions not strictly associated with septum formation

    Chair/bedside diagnosis of oral and respiratory tract infections, and identification of antibiotic resistances for personalised monitoring and treatment

    Get PDF
    Global healthcare systems are struggling with the enormous burden associated with infectious diseases, as well as the incessant rise of antimicrobial resistance. In order to adequately address these issues, there is an urgent need for rapid and accurate infectious disease diagnostics. The H2020 project DIAGORAS aims at diagnosing oral and respiratory tract infections using a fully integrated, automated and user-friendly platform for physicians' offices, schools, elderly care units, community settings, etc. Oral diseases (periodontitis, dental caries) will be detected via multiplexed, quantitative analysis of salivary markers (bacterial DNA and host response proteins) for early prevention and personalised monitoring. Respiratory Tract Infections will be diagnosed by means of DNA/RNA differentiation so as to identify their bacterial or viral nature. Together with antibiotic resistance screening on the same platform, a more efficient treatment management is expected at the point-of-care. At the heart of DIAGORAS lies a centrifugal microfluidic platform (LabDisk and associated processing device) integrating all components and assays for a fully automated analysis. The project involves an interface with a clinical algorithm for the comprehensive presentation of results to end-users, thereby increasing the platform's clinical utility. DIAGORAS' performance will be validated at clinical settings and compared with gold standards
    corecore