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Abstract

Phytochromes are a collection of bilin-containing photoreceptors that regulate numerous 

photoresponses in plants and microorganisms through their ability to photointerconvert between a 

red light-absorbing, ground state Pr and a far-red light-absorbing, photoactivated state Pfr1,2. 

While the structures of several phytochromes as Pr have been determined3-7, little is known about 

the structure of Pfr and how it initiates signaling. Here, we describe the three-dimensional solution 

structure of the bilin-binding domain as Pfr using the cyanobacterial phytochrome from 

Synechococcus OSB’. Contrary to predictions, light-induced rotation of the A but not the D 

pyrrole ring is the primary motion of the chromophore during photoconversion. Subsequent 

rearrangements within the protein then affect intra- and interdomain contact sites within the 

phytochrome dimer. From our models, we propose that phytochromes act by propagating 

reversible light-driven conformational changes in the bilin to altered contacts between the adjacent 

output domains, which in most phytochromes direct differential phosphotransfer.

The biological perception of light is mediated by a collection of photoreceptors that couple 

light absorption to specific signaling cascades. One influential set is the phytochromes, a 

superfamily of dimeric chromoproteins that absorb light via a bound bilin (or linear 
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tetrapyrrole) chromophore1,2,8. The bilin is buried within an N-terminal cGMP 

phosphodiesterase/adenyl cyclase/FhlA (GAF) domain whose contacts with the 

chromophore generate much of the unique photochromic behavior of Phys. Typically, the 

GAF domain is preceded by a Per/Arndt/Sim (PAS) domain and followed by a Phy-

associated (PHY) domain and an output module, which often includes a histidine kinase 

domain that initiates a two-component phosphorelay. By photointerconversion between Pr 

and Pfr, phytochromes act as light-regulated switches for measuring the fluence, direction, 

duration and color of the ambient light environment8.

Despite intensive study, we know little about how phytochromes acquire their unique 

photochromic behavior and how Pfr then initiates signal transmission. Recently, we and 

others provided important insights by determining the structure of the bilin-binding 

photosensory domain as Pr3-7. These models showed that the bilin is cradled within the 

GAF domain crevice, revealed a figure-of-eight knot that connects the PAS and GAF 

domains, identified a dimerization contact between adjacent GAF domains in the 

homodimer, and discovered a hairpin projection from the PHY domain that helps seal the 

chromophore pocket from the solvent. Unfortunately, these models have not fully 

illuminated how Pfr is generated. A long held notion is that the initial photochemistry 

involves a Z to E isomerization of the C15=C16 methine bridge which concomitantly rotates 

the D pyrrole ring9-13. Specific protein conformational changes have also been proposed 

from the structural analyses of an unusual phytochrome variant that prefers Pfr as the ground 

state, but whether these movements pertain to canonical phytochromes remains 

speculative7,14.

To better understand photoconversion, we used NMR spectroscopy to generate companion 

high resolution Pr and Pfr structures of the GAF domain from the phytochrome SyB-Cph1 

obtained from the thermotolerant cyanobacterium Synechococcus OSB’. This fragment 

efficiently assembles with its native chromophore phycocyanobilin (PCB) to generate a 

chromoprotein with near full Pr/Pfr photochromicity4,15. NMR spectra were collected 

without illumination with the chromoprotein as Pr and during continuous red light 

irradiation, which produced an equimolar mixture of Pr and Pfr. By comparing the results to 

our previous SyB-Cph1(GAF) Pr structure4, we generated a highly refined solution structure 

of Pfr (Protein Data Bank (PDB) code 2KLI) and an improved solution structure of Pr (PDB 

code 2KOI) with structured backbone root mean square deviations of 0.44 Å and 0.30 Å, 

respectively.

The backbone conformation of the SyB-Cph1 GAF domain as Pfr is similar to that as Pr, 

indicating that the overall shape of this domain does not change dramatically during 

photoconversion (Fig. 1). However, photoinduced movements were obvious for the bilin and 

a number of amino acid side chains. In contrast to our previous report4, the refined Pr 

structure showed that the PCB A pyrrole ring is nearly perpendicular to the B and C rings, 

with the A-ring carbonyl now pointing away from the thioether linkage to Cys138 (Fig. 

2a,b). Upon photoconversion to Pfr, the orientations of the B, C and D rings are unchanged. 

Instead, we found in the ensemble of Pfr conformers that the A ring becomes nearly co-

planar with the B and C rings, implying a ~90° rotation around the C4=C5 bridge during 

photoconversion (Fig. 2b). The thioether linkage to PCB is also contorted, which is 
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supported by the fact that the Cys138 β carbon displays the largest chemical shift change 

during photoconversion (-4.6 ppm (Suppl. Fig. 1)). Most NMR signals from PCB exhibited 

considerable broadening in Pfr, suggesting increased mobility relative to the more rigid Pr 

state (Fig. 2c,d and Suppl. Fig. 2).

Although prior studies proposed that the D ring rotates during phototransformation9-11,13, 

our NMR analyses of SyB-Cph1(GAF) failed to detect significant chemical shift changes for 

this ring during photoconversion. For example, various NMR spectra for the D-ring C171 

and C182 methyls, amide, the pyrrole nitrogen, and C18 failed to detect Pfr signals distinct 

from Pr, nor did the immediate neighboring C131 methyl of the C ring, whereas differences 

in and around the environment of the A ring were obvious (Fig. 2c,d, Suppl. Fig. 2, and ref.

15).

Rotation of the A ring of SyB-Cph1(GAF) is accompanied by conformational changes of 

several amino acids proximal to PCB, including Asp86, Tyr142, Phe82, Tyr54, His139, 

His169, Arg101 and Val100. Previous structural studies of Pr showed that the Nδ1 nitrogen 

of His139 contributes to a complex hydrogen bond network, involving the A-C ring 

nitrogens and a centrally positioned pyrrole water which together participate in the 

protonation cycle of the bilin during photoconversion, whereas the Nψ1 nitrogen of His169 

hydrogen bonds with the C19 carbonyl oxygen to stabilize the D ring4-6,16,17. In Pfr, both 

these interactions are disrupted; the imidazole rings of His139 and His169 are rotated away 

from the pyrrole water and the D ring, respectively (Fig 3a-c). The position of His169 in Pfr 

is stabilized by displacement of strand β6 toward strand β1, leading to the formation of a 

new set of hydrogen bonds involving His170 with Tyr176 and Thr48 (Suppl. Fig. 3). 

Collectively, these changes likely alter the environment of the pyrrole water and thus the 

bilin photocycle16-19, a possibility supported by our observations that the Pfr forms of 

Tyr176-Phe, His169-Ala, and Thr48-Ala mutants thermally revert more rapidly back to Pr 

(Suppl. Fig. 4).

A second set of rearrangements during photoconversion involves Phe82, Tyr54, Asp86, and 

Tyr142 near the A and D rings of PCB (Figs. 3a-c and 4a,b). The Phe82 aromatic ring 

rotates ~30° to assume a parallel displaced orientation relative to the PCB D ring that could 

enable hydrophobic π stacking interactions (Fig. 4e,f). Movement of Phe82 eliminates a 

hydrogen bond between its main chain nitrogen and the hydroxyl of Tyr54, a conserved 

residue that helps avoid non-productive fluorescence of some Phys during 

photoexcitation15,16,20. Mutant analysis shows that both Phe82 and Tyr54 are required for 

Pfr formation and stability (Suppl. Fig. 4). Rotation of the A-ring nitrogen to its position in 

Pfr is stabilized by a new hydrogen bond with the main chain oxygen of Asp86. Subsequent 

motion of the Asp86 side chain then leads to a new hydrogen bond network with the 

hydroxyl of Tyr142 and the D-ring carbonyl, the importance of which is confirmed by the 

aberrant photochemistry of a Tyr142-Phe mutant and several Asp86 substitutions (Suppl. 

Fig. 4 and ref.15). Collectively, these movements help stabilize the D ring (in addition to its 

contact with Lys52), and decrease the solvent accessibility of the Pfr chromophore (Fig 

4c,d). Given that the carboxylate group of Asp86 is predicted to form a double salt bridge 

with a conserved arginine located in the PHY domain hairpin3,7, movement of Asp86 likely 

affects this contact as well.
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Perhaps the most dramatic change in the SyB-Cph1(GAF) domain during photoconversion 

involves movement of Arg101 (Fig. 3d-f). In Pr, Arg101 forms a double salt bridge with the 

carboxylate of the B-ring propionate, but in Pfr, strand β4 is disrupted, and Arg101 and 

Val100 swivel approximately 180° to encourage a salt bridge between Arg101 and Glu185 

in helix α5 (Fig. 3d-f and Suppl. Fig. 5). Concomitant with this rotation is a 2.6 Å 

displacement of helix α2 toward the B-ring propionate, thus allowing Phe95 to fill the void 

left by Arg101. Previous mutagenic analyses of Arg101 and a comparable Arg in 

Arabidopsis PhyB revealed a critical role for this residue in Pfr stability and signaling4,22, 

whereas mutagenic studies of both Gln185 and Arg101 support the importance of their 

contact in Pfr (Suppl. Fig. 4). For example, the Gln185-Ala and Gln185-Glu mutants of SyB-

Cph1 thermally revert from Pfr to Pr slower than wild type, whereas the Gln185-Arg and 

Arg101-Ala mutants revert much faster, with the Gln185-Arg mutant also displaying 

aberrant absorption spectra. Collectively, the new Pfr contact between Arg101 and Gln185 

appears to adjust the position and/or flexibility of helix α5, as detected by notable chemical 

shift changes for several neighboring residues (e.g. Val184) and the unusual absence of 

NMR signals in Pfr from helix α5 (e.g., Gln178, Glu179, Glu180, Leu181, and Gln185), 

which participates in Phy dimerization6,7.

Taken together, the structural differences between Pr and Pfr in SyB-Cph1(GAF) combined 

with the photochemical importance of a number of key conserved residues (Suppl. Fig. 6) 

offer a possible model for phytochrome photoconversion. An unexpected feature is the 

substantial rotation of the A ring, presumably driven by a C4=C5 isomerization, and a 

contortion of its thioether linkage to the protein instead of the former proposal that the D 

ring rotates9-13. Either isomerization or relaxation of the strained C4=C5 bridge during Pfr 

formation could account for the red-shifted absorption spectrum of Pfr by increasing the 

coupling of the π-conjugation system. Further red-shifting by π-stacking interactions with 

aromatic residues neighboring the D ring could help explain the Pfr/Pr chemical shift 

differences reported previously for the D ring23. Rotation of the A ring is also supported by 

photochemical studies with sterically locked bilins24,25 and by prior NMR spectra of 

phytochrome fragments also containing the PAS and PHY domains26,27, which strongly 

suggest that our results with SyB-Cph1(GAF) are not unique to this phytochrome nor 

artifactually generated by analysis of just the GAF domain. We note that the x-ray 

crystallographic structures of several Phys as Pr3-5,7,28 have modeled with a more coplanar 

configuration for the A ring relative to the B and C rings than seen here for SyB-Cph1 in 

solution. These differences could reflect subtle variations among Phys, inherent differences 

in the environment of the chromophore in crystals versus in solution, and/or radiation-

induced damage of the Pr bilin during x-ray data collection that could relax the strain of a 

non-planar A ring5,28.

We propose that, subsequent to rotation of the A ring, a series of reversible conformational 

movements occur within the bilin-binding pocket that support the deprotonation/protonation 

cycle of the bilin, stabilize the Pfr form, and finally adjust several contact sites on the 

surface of the GAF domain. In particular, movement of the Asp86 and Tyr142 pair could 

affect the non-covalent interaction of the PHY domain with the GAF domain through its 

hairpin projection, which could then reorient by a hinge mechanism these domains relative 
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to each other. The swivel of Arg101 to contact Gln185 concomitantly reorients and/or 

destabilizes helix α5. Given the role of helix α5 in helping sister phytochromes dimerize and 

in covalently connecting the GAF and PHY domains3,6,7, even a subtle movement/

unfolding of this helix might have profound consequences on intermolecular GAF/GAF 

dimerization and intramolecular GAF/PHY contacts.

Taken together, it is conceivable that such light-induced rearrangements then initiate a 

cascade of events within the phytochrome dimer that reorient the C-terminal output modules 

relative to each other and to the photosensory modules. For phytochromes bearing histidine 

kinase output modules, such light-driven rearrangements could then alter 

autophosphorylation in trans across the phytochrome dimer. In this manner, phytochromes 

may resemble the phototropin family of photoreceptors, which couples flavin 

photochemistry to selective destabilization of a helical contact adjacent to the photosensory 

domain and finally to activation of the appended output kinase29. Because the PYP family 

of photoreceptors may work by a similar light-triggered conformational switch30, our model 

for phytochromes provides further support for the notion that light-induced conformational 

changes are fundamental for photoactivated signaling.

METHODS SUMMARY

The GAF domain of Synechococcus OSB’ Cph1 bearing a C-terminal 6His tag was 

expressed and assembled with PCB in Escherichia coli and purified as described 

previously4,15. The protein moiety was uniformly labeled by using expression medium 

containing 15NH4Cl and [13C]-glycerol and an excess of unlabelled bilin precursor α-

aminolevulinic acid (ALA). PCB was selectively labeled by adding [U-15N]-ALA, [3-13C]-

ALA, [4-13C]-ALA, [1,2-13C]-ALA, or [U-15N;U-13C]-ALA to the medium. NMR spectra 

were collected with a ~50:50 equilibrium mixture of Pr and Pfr that was obtained by 

continuously irradiating the samples with red light15. Three-dimensional structures of Pr 

and Pfr were generated by a suite of NMR analyses using the prior model of SyB-

Cph1(GAF) as a reference (PDB code 2K2N)4. Statistical support for the Pfr structure is 

present in Suppl. Table 1. The structures are also supported by the photochemical analyses 

of various SyB-Cph1(GAF-PHY) mutants generated by site-directed mutagenesis (Suppl. 

Fig. 4).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

METHODS

Chromoprotein production

The first 200 amino acids of Synechococcus OSB’ (SyB) Cph1 bearing a C-terminal 6His tag 

were expressed, assembled with PCB in Escherichia coli, and purified using the dual-

plasmid recombinant system described previously31,32. Even with its lack of an N-terminal 

PAS domain, SyB-Cph1 shares a number of photochemical properties with other members of 

the phytochrome superfamily, including red/far-red light photochromicity, the preference of 

Pr as the ground state, the extended configuration of the bilin in Pr, the protonation of the 

bilin as both Pr and Pfr, a similar fold of its GAF domain, and the importance of conserved 

amino acids lining the bilin-binding pocket31,32. Samples used for backbone, sidechain, and 

nuclear Overhauser effect (NOE) data collection were expressed in medium 

containing 15NH4Cl and [13C]-glycerol and excess of the bilin precursor α-aminolevulinic 

acid (ALA) unlabeled. PCB was selectively labeled by adding [U-15N]-ALA, [3-13C]-ALA, 

[4-13C]-ALA, [1,2-13C]-ALA, or [U-15N;U-13C]-ALA (Sigma, St. Louis, MO) to the 

medium containing unlabeled NH4Cl and glycerol.

Various site-directed mutants affecting the GAF-PHY fragment of SyB-Cph1 (residues 

1-421) bearing a C-terminal 6His tag were generated by the QuickChange method 

(Stratagene, La Jolla, CA). PCB incorporation was assayed by zinc-induced fluorescence of 

the chromoproteins following SDS-PAGE32. The zinc-impregnated gels were irradiated 

with 260 nm light with the fluorescence emission detected in the visible region of the light 

spectrum. Pr and Pfr absorption and difference spectra, and rates of Pfr to Pr thermal 

reversion were measured at 55 °C as previously described32.

NMR Data Collection

For Pfr data collection of the SyB-Cph1(GAF) sample, an equilibrium mixture of Pr and Pfr 

was obtained by irradiating the Shigemi microcell solution with saturating red light and then 

maintaining this equilibrium during data collection by continuous irradiation with low 

fluence red light as described32. Unless noted otherwise, all NMR spectra were recorded on 

800 and 600 MHz Varian INOVA spectrometers equipped with cryogenic probes. Samples 

used for backbone, sidechain, and nuclear Overhauser effect (NOE) experiments contained 

1.7 mM [U-15N;U-13C]-SyB-Cph1(GAF) assembled with unlabelled PCB in 10 mM 

deuterated Tris-HCl (pH 8.5) and 0.03% NaN3 in 93% H2O/7% D2O. Protein 1DNH 

and 1DCαHα residual dipole couplings (RDCs) were recorded with 1 mM [U-15N;U-13C]-

SyB-Cph1(GAF) in anisotropic medium containing an axially stretched (5.4 mm to 4.2 mm) 

negatively charged acrylamide gel33 or supplemented with sodium dodecylsulfate-doped 

ditetradecyl-phosphatidylcholine/dihexyl-phosphatidylcholine bicelles (molar ratio 

1:30:1010). PCB 3-D 13C NOE data and isotropic methyl 1JCH couplings were collected as 

previously described31. A similar sample in anisotropic medium containing 0.5 mM protein 

and 15 mg/mL filamentous pf1 phage (ASLA Biotech, Riga, Latvia) was used to measure 

PCB methyl RDCs (1DCH). 1-D 15N-direct detected, 2-D 15N-heteronuclear single quantum 
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coherence (HSQC), and 15N NOE experiments used a 1 mM sample of unlabeled protein 

assembled with [U-15N]-PCB31.

All NMR data were collected at 25 °C, except for the measurements of bicelle RDCs, which 

were collected at 33 °C. Distance constraints were obtained from 3-D 15N-edited NOESY 

(tmix=150 ms) and 3-D 13C-edited NOESY (tmix=120 ms) experiments. NH and CαHα 

dipolar couplings were measured from a 3-D HNCO antiphase 1H-coupled in the 15N 

dimension34 and a 3-D HCA(CO)N antiphase 1H-coupled in the 13C dimension, 

respectively. PCB methyl RDCs were obtained from a J-modulated [1H-13C] HSQC 

spectrum35 recorded with a 600 MHz Bruker DMX-Avance spectrometer.

Resonance Assignments and Secondary Structure Calculations
15N T2 measurements with 1.7 mM [U-15N; U-13C]-SyB-Cph1(GAF) in Pr form yielded 

uniform values around 45 ms for the rigid part of the molecule31. Backbone assignments 

were obtained and assigned manually as described31. The TALOS program36 provided 152 

pairs of ϕ/ψ backbone torsion angle restraints and identified the secondary structure, which 

was confirmed by local NOEs. Hydrogen bond restraints were inferred initially for α-helices 

and later for β-strands when the level of structural refinement allowed their unambiguous 

alignment within the β-sheet. Two distance restraints of 1.9 Å and 2.9 Å per involved pair of 

residues were used to represent hydrogen bonds for HN-O and N-O, respectively37. To help 

assign NMR peaks to the Pr and Pfr forms, we classified them into three groups: peaks 

belonging to atoms with distinct Pfr assignments whose chemical shifts matched those 

determined previously for Pr, indicating that they correspond to the Pr component of the 

mixture31, peaks belonging to atoms without distinct Pfr assignments whose chemical shifts 

matched those for Pr, indicating that they correspond to atoms whose environment is 

unaffected by photoconversion, and peaks with chemical shifts different from those 

observed for Pr and thus unique to the Pfr form. Backbone signals within the three groups 

were extended to side chains by reference to NOE and HCCH-TOCSY spectra, and the 

three-group classification was updated manually.

For chromophore assignments, PCB synthesized with 15N or 13C-labelled ALA was used to 

unambiguously identify almost all protons, the ring D nitrogen, and carbonyl carbons based 

on NOE contacts among themselves and with unambiguously assigned protein protons. The 

only exceptions were the CH2 moieties in the propionate chains, which are known to be 

mobile and not observable due to conformational broadening of their NMR signals. Protons 

5-H, 15-H, 2-H, 3-H, 3′-H, and 181-CH2 were assigned from 13C-HSQC and 13C-NOE 

spectra based on multiple NOE contacts with PCB methyls and by direct detection (Suppl. 

Fig. 2); their assignments were also confirmed by a multitude of intra PCB NOE contacts 

among themselves and with 21, 32, 71, 131 and 171 methyl groups. The proton and carbon 

assignments are in excellent agreement with NMR assignments of PCB published 

previously38,39.

3-D Structure Calculations and Refinements

Structure calculations and refinements made use of the torsion angle molecular dynamics 

and the internal variable dynamics modules of Xplor-NIH40. A separate structure 
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calculation run (100 conformers) was used to identify and generously constrain those side 

chain dihedral angles that exhibited a unique rotameric state in more than 90% of the 

conformers. PCB topologies and parameters were generated by the Dundee PRODRG2 

Server41. Peak intensities in 3D NOESY spectra of the protein were assigned using the 

PIPP/STAPP package42 and converted into a continuous distribution of 1118 approximate 

interproton distance restraints, with a uniform 40% distance error applied to take into 

account spin diffusion. PCB distance restraints were obtained by classifying the NOE peak 

intensities into 3 bins (strong, medium, and weak) (Suppl. Fig. 7). We attempted to measure 

RDCs in more than one alignment medium. To accommodate consistent measurements at 

pH 8.5, hydrolysis-resistant dialkyl analogs43 of the traditional DMPC:DHPC bicelles were 

exploited44. Structural restraints were determined with negatively charged bicelle 1DNH 

and 1DCαHα RDC data. We also used as structural constraints the RDCs of the PCB methyls 

from protein aligned with pf1 phage. The 1DNH and 1DCαHα RDC sets measured in pf1 

were used to obtain the protein alignment tensor in this medium, but not as direct structural 

constraints.

The final NMR structure for Pfr (PDB code 2KLI) and the further refined structure for Pr 

(PDB code 2KOI; original code 2K2N) do not include the C-terminal 6His tag and the first 

30 amino acids. The Pr structure was improved by adding another set of protein NH and 

PCB methyl RDCs in negatively charged stretched gels and 187 15N and 131 13C additional 

protein NOEs. We also assigned additional PCB protons (5-H, 15-H, 2-H, 3-H, 31-H and 

181-CH2) and their associated NOE contacts with the protein and among themselves (44 

new PCB NOEs), which resulted in a consistent tilted, out-of-place orientation of ring A in 

Pr. The new ensemble of refined Pr structures has an improved heavy atom root mean 

squared deviation over the structured backbone regions (0.30 Å from 0.43 Å) and a slightly 

improved agreement with all measured RDCs.

From 100 refined conformers, a subset of 20 low-energy conformers was selected to 

represent the Pr and Pfr solution structures. These Pr and Pfr conformers have a root mean 

square deviation of 0.30 Å and 0.44 Å for backbone heavy atoms over the most structured 

regions (residues 31–110, 136–171, and 183–202), respectively. The final set of conformers 

had no NOE constraint violations greater than 0.5 Å in more than 40% of the calculated 

models. PROCHECK45 analysis of the structured region in the 20 lowest energy Pfr 

conformers showed that 88.6% of the residues were within the most favored region, 11.3% 

in the allowed region, and 0.1% in the disallowed region of the Ramachandran map. A 

summary of the agreement between experimental constraints and calculated Pfr structures is 

provided in Supplemental Table 1.
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Figure 1. Three-dimensional overlay of SyB-Cph1(GAF) Pr and Pfr solution structures
The unstructured first 30 amino acids and C-terminal 6His-tag are not shown. a, Aligned Pr 

(grey) and Pfr (magenta) superimpositions of the protein backbone from their respective 20 

lowest energy conformers. The PCB chromophore is shown in grey for Pr and cyan for Pfr. 

b, Same as a, but only the lowest energy conformer for Pr (grey) and Pfr (magenta) are 

shown. The α helices and β strands are labeled.

Ulijasz et al. Page 12

Nature. Author manuscript; available in PMC 2010 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Rotation of the A ring of the PCB chromophore during Pr to Pfr photoconversion
a, Schematic diagram of PCB with numbered carbons for reference. b, Five lowest energy 

NMR conformers of PCB shown as a bundle in Pr (grey, top), Pfr (cyan, middle), and Pr/Pfr 

superimposition (bottom). The lines illustrate the direction of the A-ring carbonyl for each 

conformer. The indicated angle represents the Pr to Pfr rotation of the A ring for the lowest 

energy conformers. c, Two-dimensional 1H-15N heteronuclear single quantum coherence 

spectrum of SyB-Cph1(GAF) with 13C incorporated into PCB carbons 21 ,32, 71, 82, 122, 

131, 171, and 182 as Pr (blue) and following saturating red light irradiation (red, mixture of 

Pr and Pfr). d, Two-dimensional nuclear Overhauser effect spectrum of the sample in c 
showing 1Hx/1Hy crosspeaks from Pr (blue) and the mixture of Pr and Pfr (red). Only the 

C31 and C71 methyl carbons attached to PCB rings A and B (circled) show chemical shift 

changes upon photoconversion to Pfr whereas the chemical shifts for the C131, C171, C182 

methyl carbons attached to the C and D rings are unaffected.
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Figure 3. Light-driven conformational changes for amino acids surrounding the chromophore
a-c, Lowest energy structures for the PCB binding pocket as Pr (a), Pfr (b), and a 

superimposition of the two (c) highlighting conformational changes of relevant sidechains. 

The pyrrole water (pw) was modeled by aligning the available crystal structures for 

Deinococcus radiodurans BphP (PDB codes 1ZTU and 2O9B5,6) and Synechocystis Cph1 

(PDB code 2VEA3) with the SyB-Cph1(GAF) solution structures. Straight arrows indicate 

the direction of the A-ring carbonyl of PCB in Pr and Pfr. Curved arrows indicate the 

directions of His139 and His169 sidechain movements. d-f, Ribbon representation for the 

region surrounding Arg101 as Pr (d), Pfr (e), and a superimposition of the two (f), 

highlighting the rotation of Val100 and Arg101 during photoconversion. Phe95 is shown in 

green, Val100 in yellow, Arg101 in orange, and Gln185 in purple. The 180° rotation of 

Val100 and Arg101 during Pr to Pfr photoconversion allows Arg101 to contact helix α5 at 

Gln185. Helix α2 and Phe95 move toward PCB to potentially block Arg101 from swiveling 

back to its Pr position. In all panels, the A-D pyrrole rings are indicated. Dashed lines 

highlight potential electrostatic interactions.
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Figure 4. Conformational rearrangement of Asp86, Tyr142 and Phe82 during Pr to Pfr 
photoconversion
a and b, Ribbon representation of the structures of SyB-Cph1(GAF) as Pr (a) and as Pfr (b) 

illustrating the conformational changes combined with the upshift of helix α2 (green) during 

photoconversion. The small arrow indicates the orientation of the A-ring carbonyl. The large 

arrow in b highlights the displacement of helix α2. Proposed hydrogen bonds between 

Tyr142, Asp86 and the D ring nitrogen are indicated by the dashed lines. c and d, Changes 

in solvent accessibility for PCB in Pr (c) versus Pfr (d). The green and red areas show the 

solvent exposed surfaces of helix α2 and the Asp86/Tyr142/Phe82 triad, respectively. e and 
f, Predicted π-stacking of PCB with Phe82 (red) in the Pr (e) and Pfr states (f). Rotation of 

the aromatic ring of Phe82 upon Pfr formation generates a parallel displaced orientation that 

favors π stacking interactions with PCB. In all panels, PCB is shown in cyan, the A-D 

pyrrole rings are labeled, and the key amino acids are in red.
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