64,632 research outputs found
Constitutive Equations for Use in Design Analyses of Long-life Elevated Temperature Components
Design analysis needs and procedures relative to elevated temperature components in liquid metal fast breeder reactor (LMFBR) system were examined. The effects of the thermal transients on the pressure boundary components are enhanced by the excellent heat transfer properties of the liquid sodium coolant. Design criteria for high temperature nuclear reactor components recognize the potential occurrence of inelastic structural response. Specifically, criteria and limits were developed which reflect a recognition of this potential and employ design by analysis concepts that requires that inelastic (elastic-plastic and creep) analyses be performed. Constitutive equations to represent multiaxial time-dependent responses of LMFBR alloys are established. The development of equations applicable under cyclic loading conditions are outlined
Spatial frequency response of an optical heterodyne receiver
The principles of transfer function analysis are applied to a passive optical heterodyne receiver to obtain the modulation transfer function (MTF). MTF calculations are performed based on an optical platform which is imaging vertically varying profiles at worst case shuttle orbit altitudes. An analysis of the derogatory effects of sampling (aliasing) and central obscurations on both resolution and heterodyne efficiency is given. It is found that the cascading property of MTF analysis must be carefully applied since the coherent transfer function of the optical receiver and that due to the local oscillator-detector combination are not separable but are related by the convolution of their products. Application of these results to the specific case of a space-lab type optical heterodyne receiver shows that resolutions of the order of 1.5-2.0 Km are possible for worst-case type orbital scenarios. Further, comparison of obscured-type receivers (e.g., Cassegrains) with unobscured receivers shows that both resolution and efficiency are severely degraded in an obscured-type receiver and consequently should not be used for a passive heterodyne detection scheme
Optimizing radiation dose and fractionation for the definitive treatment of locally advanced non-small cell lung cancer
Recommended from our members
Multi-Material Ultrasonic Consolidation
Ultrasonic consolidation (UC) is a recently developed direct metal solid freeform
fabrication process. While the process has been well-demonstrated for part fabrication in Al alloy
3003 H18, including with intricate cooling channels, some of the potential strengths of the
process have not been fully exploited. One of them is its flexibility with build materials and the
other is its suitability for fabrication of multi-material and functionally graded material parts with
enhanced functional or mechanical properties. Capitalizing on these capabilities is critical for
broadening the application range and commercial utilization of the process. In the current work,
UC was used to investigate ultrasonic bonding of a broad range of engineering materials, which
included stainless steels, Ni-base alloys, brass, Al alloys, and Al alloy composites. UC multimaterial part fabrication was examined using Al alloy 3003 as the bulk part material and the
above mentioned materials as performance enhancement materials. Studies were focused on
microstructural aspects to evaluate interface characteristics between dissimilar material layers.
The results showed that most of these materials can be successfully bonded to Al alloy 3003 and
vice versa using the ultrasonic consolidation process. Bond formation and interface
characteristics between various material combinations are discussed based on oxide layer
characteristics, material properties, and others.Mechanical Engineerin
Boys and girls come out to play: Gender differences in children\u27s play patterns
This paper presents findings from The Irish Neighbourhood Play Study; a national, cross-border research project which recorded children’s play patterns in Ireland during 2012. The study incorporated 1688 families across 240 communities. This study recorded the play patterns of children in Ireland aged birth-14 years. The findings of the study are discussed here in the context of gendered patterns. Particular emphasis is placed on the skill differences developed through various play choices. These differences are explored within the context of established literature on the learning strengths of boys and girls. Established bodies of literature on children’s learning across gender lines has long been engaged in the debate about whether these differences are biological or socially constructed. This paper offers a parallel question; Are gender differences within learning, constructed through play choices within childhood?
©IATED (2017). Reproduced in Research Online with permission
High Accuracy Near-infrared Imaging Polarimetry with NICMOS
The findings of a nine orbit calibration plan carried out during HST Cycle
15, to fully determine the NICMOS camera 2 (2.0 micron) polarization
calibration to high accuracy, are reported. Recently Ueta et al. and Batcheldor
et al. have suggested that NICMOS possesses a residual instrumental
polarization at a level of 1.2-1.5%. This would completely inhibit the data
reduction in a number of GO programs, and hamper the ability of the instrument
to perform high accuracy polarimetry. We obtained polarimetric calibration
observations of three polarimetric standards at three spacecraft roll angles
separated by ~60deg. Combined with archival data, these observations were used
to characterize the residual instrumental polarization in order for NICMOS to
reach its full potential of accurate imaging polarimetry at p~1%. Using these
data, we place an 0.6% upper limit on the instrumental polarization and
calculate values of the parallel transmission coefficients that reproduce the
ground-based results for the polarimetric standards. The uncertainties
associated with the parallel transmission coefficients, a result of the
photometric repeatability of the observations, are seen to dominate the
accuracy of p and theta. However, the updated coefficients do allow imaging
polarimetry of targets with p~1.0% at an accuracy of +/-0.6% and +/-15deg. This
work enables a new caliber of science with HST.Comment: 13 pages, 9 figures, PASP accepte
- …
