126 research outputs found

    Quantitative mass spectrometry imaging of emtricitabine in cervical tissue model using infrared matrix-assisted laser desorption electrospray ionization

    Get PDF
    A quantitative mass spectrometry imaging (QMSI) technique using infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) is demonstrated for the antiretroviral (ARV) drug emtricitabine in incubated human cervical tissue. Method development of the QMSI technique leads to a gain in sensitivity and removal of interferences for several ARV drugs. Analyte response was significantly improved by a detailed evaluation of several cationization agents. Increased sensitivity and removal of an isobaric interference was demonstrated with sodium chloride in the electrospray solvent. Voxel-to-voxel variability was improved for the MSI experiments by normalizing analyte abundance to a uniformly applied compound with similar characteristics to the drug of interest. Finally, emtricitabine was quantified in tissue with a calibration curve generated from the stable isotope-labeled analog of emtricitabine followed by cross-validation using liquid chromatography tandem mass spectrometry (LC-MS/MS). The quantitative IR-MALDESI analysis proved to be reproducible with an emtricitabine concentration of 17.2±1.8 μg/gtissue. This amount corresponds to the detection of 7 fmol/voxel in the IR-MALDESI QMSI experiment. Adjacent tissue slices were analyzed using LC-MS/MS which resulted in an emtricitabine concentration of 28.4±2.8 μg/gtissue

    NIST interlaboratory study on glycosylation analysis of monoclonal antibodies : comparison of results from diverse analytical methods

    Get PDF
    Glycosylation is a topic of intense current interest in the development of biopharmaceuticals since it is related to drug safety and efficacy. This work describes results of an interlaboratory study on the glycosylation of the Primary Sample (PS) of NISTmAb, a monoclonal antibody reference material. Seventy‑six laboratories from industry, university, research, government, and hospital sectors in Europe, North America, Asia, and Australia submitted a total of 103 reports on glycan distributions. The principal objective of this study was to report and compare results for the full range of analytical methods presently used in the glycosylation  analysis of mAbs. Therefore, participation was unrestricted, with laboratories choosing their own measurement techniques. Protein glycosylation was determined in various ways, including at the level of intact mAb, protein fragments, glycopeptides, or released glycans, using a wide variety of methods for derivatization, separation, identification, and quantification. Consequently, the diversity of results was enormous, with the number of glycan compositions identified by each laboratory ranging from 4 to 48. In total, one hundred sixteen glycan compositions were reported, of which 57 compositions could be assigned consensus abundance values. These consensus medians provide community-derived values for NISTmAb PS. Agreement with the consensus medians did not depend on the specific method or laboratory type.. The study provides a view of the current state-of-the-art for biologic glycosylation measurement and suggests a clear need for harmonization of glycosylation analysis methods
    • …
    corecore