9,889 research outputs found
Painting algorithms for fuzzy classification
Absfruct-Land cover analysis by means of remotely sensing images quite often suggest the existence of fuzzy classes, where no clear borders or particular shapes appear. In this paper we present an image classification aid algorithm which shows as its main output a processed image where each pixel is being colored according to the degree of similitude to their respective surrounding pixels. Such a processed image is therefore suggesting possible classes, to be implemented in a more sophisticated image classification process. A key underlying argument for this approach is the relevance of painting techniques in order to help decision makers to understand complex information relative to fuzzy image classification
The Theory of a Quantum Noncanonical Field in Curved Spacetimes
Much attention has been recently devoted to the possibility that quantum
gravity effects could lead to departures from Special Relativity in the form of
a deformed Poincar\`e algebra. These proposals go generically under the name of
Doubly or Deformed Special Relativity (DSR). In this article we further explore
a recently proposed class of quantum field theories, involving noncanonically
commuting complex scalar fields, which have been shown to entail a DSR-like
symmetry. An open issue for such theories is whether the DSR-like symmetry has
to be taken as a physically relevant symmetry, or if in fact the "true"
symmetries of the theory are just rotations and translations while boost
invariance has to be considered broken. We analyze here this issue by extending
the known results to curved spacetime under both of the previous assumptions.
We show that if the symmetry of the free theory is taken to be a DSR-like
realization of the Poincar\'e symmetry, then it is not possible to render such
a symmetry a gauge symmetry of the curved physical spacetime. However, it is
possible to introduce an auxiliary spacetime which allows to describe the
theory as a standard quantum field theory in curved spacetime. Alternatively,
taking the point of view that the noncanonical commutation of the fields
actually implies a breakdown of boost invariance, the physical spacetime
manifold has to be foliated in surfaces of simultaneity and the field theory
can be coupled to gravity by making use of the ADM prescription.Comment: 9 pages, no figure
Drops with non-circular footprints
In this paper we study the morphology of drops formed on partially wetting
substrates, whose footprint is not circular. This type of drops is a
consequence of the breakup processes occurring in thin films when anisotropic
contact line motions take place. The anisotropy is basically due to hysteresis
effects of the contact angle since some parts of the contact line are wetting,
while others are dewetting. Here, we obtain a peculiar drop shape from the
rupture of a long liquid filament sitting on a solid substrate, and analyze its
shape and contact angles by means of goniometric and refractive techniques. We
also find a non--trivial steady state solution for the drop shape within the
long wave approximation (lubrication theory), and compare most of its features
with experimental data. This solution is presented both in Cartesian and polar
coordinates, whose constants must be determined by a certain group of measured
parameters. Besides, we obtain the dynamics of the drop generation from
numerical simulations of the full Navier--Stokes equation, where we emulate the
hysteretic effects with an appropriate spatial distribution of the static
contact angle over the substrate
Diacritical study of light, electrons, and sound scattering by particles and holes
We discuss the differences and similarities in the interaction of scalar and
vector wave-fields with particles and holes. Analytical results are provided
for the transmission of isolated and arrayed small holes as well as surface
modes in hole arrays for light, electrons, and sound. In contrast to the
optical case, small-hole arrays in perforated perfect screens cannot produce
acoustic or electronic surface-bound states. However, unlike electrons and
light, sound is transmitted through individual holes approximately in
proportion to their area, regardless their size. We discuss these issues with a
systematic analysis that allows exploring both common properties and unique
behavior in wave phenomena for different material realizations.Comment: 3 figure
Heavy Quark Potential at Finite Temperature Using the Holographic Correspondence
We revisit the calculation of a heavy quark potential in N =4 supersymmetric
Yang-Mills theory at finite temperature using the AdS/CFT correspondence. As is
widely known, the potential calculated in the pioneering works of Rey et al.
and Brandhuber et al. is zero for separation distances r between the quark and
the anti-quark above a certain critical separation, at which the potential has
a kink. We point out that by analytically continuing the string configurations
into the complex plane, and using a slightly different renormalization
subtraction, one obtains a smooth non-zero (negative definite) potential
without a kink. The obtained potential also has a non-zero imaginary
(absorptive) part for separations r > r_c = 0.870/\pi T . At large separations
r the real part of the potential does not exhibit the exponential Debye falloff
expected from perturbation theory and instead falls off as a power law,
proportional to 1/r^4 for r > r_0 = 2.702 / \pi T.Comment: 5 pages, 3 figures. Title modified. Discussion extended and
references modifie
Hydrodynamics from the Dp-brane
We complete the computation of viscous transport coefficients in the near
horizon geometries that arise from a stack of black Dp-branes for p=2,...,6 in
the decoupling limit. The main new result is the obtention of the bulk
viscosity which, for all p, is found to be related to the speed of sound by the
simple relation \zeta/\eta = -2(v_s^2-1/p). For completeness the shear
viscosity is rederived from gravitational perturbations in the shear and scalar
channels. We comment on technical issues like the counterterms needed, or the
possible dependence on the conformal frame.Comment: 15 page
The role of temperature in the magnetic irreversibility of type-I Pb superconductors
Evidence of how temperature takes part in the magnetic irreversibility in the
intermediate state of a cylinder and various disks of pure type-I
superconducting lead is presented. Isothermal measurements of first
magnetization curves and magnetic hysteresis cycles are analyzed in a reduced
representation that defines an equilibrium state for flux penetration in all
the samples and reveals that flux expulsion depends on temperature in the disks
but not in the cylinder. The magnetic field at which irreversibility sets in
along the descending branch of the hysteresis cycle and the remnant
magnetization at zero field are found to decrease with temperature in the
disks. The contributions to irreversibility of the geometrical barrier and the
energy minima associated to stress defects that act as pinning centers on
normal-superconductor interfaces are discussed. The differences observed among
the disks are ascribed to the diverse nature of the stress defects in each
sample. The pinning barriers are suggested to decrease with the magnetic field
to account for these results
Electron mean free path from angle-dependent photoelectron spectroscopy of aerosol particles
We propose angle-resolved photoelectron spectroscopy of aerosol particles as
an alternative way to determine the electron mean free path of low energy
electrons in solid and liquid materials. The mean free path is obtained from
fits of simulated photoemission images to experimental ones over a broad range
of different aerosol particle sizes. The principal advantage of the aerosol
approach is twofold. Firstly, aerosol photoemission studies can be performed
for many different materials, including liquids. Secondly, the size-dependent
anisotropy of the photoelectrons can be exploited in addition to size-dependent
changes in their kinetic energy. These finite size effects depend in different
ways on the mean free path and thus provide more information on the mean free
path than corresponding liquid jet, thin film, or bulk data. The present
contribution is a proof of principle employing a simple model for the
photoemission of electrons and preliminary experimental data for potassium
chloride aerosol particles
- …