893 research outputs found

    Cooperative program for design, fabrication, and testing of graphite/epoxy composite helicopter shafting

    Get PDF
    The fabrication of UH-1 helicopter tail rotor drive shafts from graphite/epoxy composite materials is discussed. Procedures for eliminating wrinkles caused by lack of precure compaction are described. The development of the adhesive bond between aluminum end couplings and the composite tube is analyzed. Performance tests to validate the superiority of the composite materials are reported

    Reduced dimensionality spin-orbit dynamics of CH3 + HCl reversible arrow CH4 Cl on ab initio surfaces

    Get PDF
    A reduced dimensionality quantum scattering method is extended to the study of spin-orbit nonadiabatic transitions in the CH3 + HCl reversible arrow CH4 + Cl(P-2(J)) reaction. Three two-dimensional potential energy surfaces are developed by fitting a 29 parameter double-Morse function to CCSD(T)/IB//MP2/cc-pV(T+d)Z-dk ab initio data; interaction between surfaces is described by geometry-dependent spin-orbit coupling functions fit to MCSCF/cc-pV(T+d)Z-dk ab initio data. Spectator modes are treated adiabatically via inclusion of curvilinear projected frequencies. The total scattering wave function is expanded in a vibronic basis set and close-coupled equations are solved via R-matrix propagation. Ground state thermal rate constants for forward and reverse reactions agree well with experiment. Multi-surface reaction probabilities, integral cross sections, and initial-state selected branching ratios all highlight the importance of vibrational energy in mediating nonadiabatic transition. Electronically excited state dynamics are seen to play a small but significant role as consistent with experimental conclusions. (C) 2011 American Institute of Physics. [doi:10.1063/1.3592732

    Surveyor surface sampler instrument

    Get PDF
    Operational capabilities, methods of deployment command and control, areas of lunar operation, and television viewability of Surveyor lunar surface sampler instrumen

    Nonlinear dynamics of a solid-state laser with injection

    Full text link
    We analyze the dynamics of a solid-state laser driven by an injected sinusoidal field. For this type of laser, the cavity round-trip time is much shorter than its fluorescence time, yielding a dimensionless ratio of time scales σ1\sigma \ll 1. Analytical criteria are derived for the existence, stability, and bifurcations of phase-locked states. We find three distinct unlocking mechanisms. First, if the dimensionless detuning Δ\Delta and injection strength kk are small in the sense that k=O(Δ)σ1/2k = O(\Delta) \ll \sigma^{1/2}, unlocking occurs by a saddle-node infinite-period bifurcation. This is the classic unlocking mechanism governed by the Adler equation: after unlocking occurs, the phases of the drive and the laser drift apart monotonically. The second mechanism occurs if the detuning and the drive strength are large: k=O(Δ)σ1/2k =O(\Delta) \gg \sigma^{1/2}. In this regime, unlocking is caused instead by a supercritical Hopf bifurcation, leading first to phase trapping and only then to phase drift as the drive is decreased. The third and most interesting mechanism occurs in the distinguished intermediate regime k,Δ=O(σ1/2)k, \Delta = O(\sigma^{1/2}). Here the system exhibits complicated, but nonchaotic, behavior. Furthermore, as the drive decreases below the unlocking threshold, numerical simulations predict a novel self-similar sequence of bifurcations whose details are not yet understood.Comment: 29 pages in revtex + 8 figs in eps. To appear in Phys. Rev. E (scheduled tentatively for the issue of 1 Oct 98

    Positronic lithium, an electronically stable Li-e+^+ ground state

    Get PDF
    Calculations of the positron-Li system were performed using the Stochastic Variational Method and yielded a minimum energy of -7.53208 Hartree for the L=0 ground state. Unlike previous calculations of this system, the system was found to be stable against dissociation into the Ps + Li+^+ channel with a binding energy of 0.00217 Hartree and is therefore electronically stable. This is the first instance of a rigorous calculation predicting that it is possible to combine a positron with a neutral atom and form an electronically stable bound state.Comment: 11 pages, 2 tables. To be published in Phys.Rev.Let

    The effect of moving to East Village, the former London 2012 Olympic and Paralympic Games Athletes' Village, on mode of travel (ENABLE London study, a natural experiment)

    Get PDF
    Background Interventions to encourage active modes of travel (walking, cycling) may improve physical activity levels, but longitudinal evidence is limited and major change in the built environment / travel infrastructure may be needed. East Village (the former London 2012 Olympic Games Athletes Village) has been repurposed on active design principles with improved walkability, open space and public transport and restrictions on residential car parking. We examined the effect of moving to East Village on adult travel patterns. Methods One thousand two hundred seventy-eight adults (16+ years) seeking to move into social, intermediate, and market-rent East Village accommodation were recruited in 2013–2015, and followed up after 2 years. Individual objective measures of physical activity using accelerometry (ActiGraph GT3X+) and geographic location using GPS travel recorders (QStarz) were time-matched and a validated algorithm assigned four travel modes (walking, cycling, motorised vehicle, train). We examined change in time spent in different travel modes, using multilevel linear regresssion models adjusting for sex, age group, ethnicity, housing group (fixed effects) and household (random effect), comparing those who had moved to East Village at follow-up with those who did not. Results Of 877 adults (69%) followed-up, 578 (66%) provided valid accelerometry and GPS data for at least 1 day (≥540 min) at both time points; half had moved to East Village. Despite no overall effects on physical activity levels, sizeable improvements in walkability and access to public transport in East Village resulted in decreased daily vehicle travel (8.3 mins, 95%CI 2.5,14.0), particularly in the intermediate housing group (9.6 mins, 95%CI 2.2,16.9), and increased underground travel (3.9 mins, 95%CI 1.2,6.5), more so in the market-rent group (11.5 mins, 95%CI 4.4,18.6). However, there were no effects on time spent walking or cycling

    Transform-limited pulses are not optimal for resonant multiphoton transitions

    Full text link
    Maximizing nonlinear light-matter interactions is a primary motive for compressing laser pulses to achieve ultrashort transform limited pulses. Here we show how, by appropriately shaping the pulses, resonant multiphoton transitions can be enhanced significantly beyond the level achieved by maximizing the pulse's peak intensity. We demonstrate the counterintuitive nature of this effect with an experiment in a resonant two-photon absorption, in which, by selectively removing certain spectral bands, the peak intensity of the pulse is reduced by a factor of 40, yet the absorption rate is doubled. Furthermore, by suitably designing the spectral phase of the pulse, we increase the absorption rate by a factor of 7.Comment: 4 pages, 3 figure

    Computational molecular spectroscopy

    Get PDF
    Spectroscopic techniques can probe molecular systems non-invasively and investigate their structure, properties and dynamics in different environments and physico-chemical conditions. Different spectroscopic techniques (spanning different ranges of the electromagnetic field) and their combination can lead to a more comprehensive picture of investigated systems. However, the growing sophistication of these experimental techniques makes it increasingly complex to interpret spectroscopic results without the help of computational chemistry. Computational molecular spectroscopy, born as a branch of quantum chemistry to provide predictions of spectroscopic properties and features, emerged as an independent and highly specialized field but has progressively evolved to become a general tool also employed by experimentally oriented researchers. In this Primer, we focus on the computational characterization of medium-sized molecular systems by means of different spectroscopic techniques. We first provide essential information about the characteristics, accuracy and limitations of the available computational approaches, and select examples to illustrate common trends and outcomes of general validity that can be used for modelling spectroscopic phenomena. We emphasize the need for estimating error bars and limitations, coupling accuracy with interpretability, touch upon data deposition and reproducibility issues, and discuss the results in terms of widely recognized chemical concepts

    A noninvasive rf probe for the study of ionization and dissociation processes in technological plasmas

    Get PDF
    A swept frequency absorbance plasma diagnostic technique for measurement of self-resonance frequency, intrinsic plasma-tool distributed capacitance, radiative energy loss, and effective plasma capacitance is described. The ex situ probe measures the plasma properties independently of all contributions from the plasma-tool and transmission line connection to the rf supply. The technique employs a swept frequency source and a balanced equal ratio arm bridge to measure the frequency response of the plasma tool after the plasma has been extinguished under plasma conjugate matching conditions. The resonant frequency of the combination of capacitances due to plasma-tool geometry (intrinsic capacitance, C-i) and the matching network (C-m) exhibits a shift from the excitation frequency (13.56 MHz) that is dependent on the effective plasma capacitance. Resonance frequency shift data are given for He, Ne, Ar, O-2, N-2, and N2O as a function of both pressure (0.02-0.8 mbar) and incident power (50 and 100 W). This technique allows the differentiation between dissociation and ionization processes within the plasma through a simple noninvasive rf measurement. (C) 1999 American Institute of Physics. [S0021-8979(99)03420-9]

    Calculation of the positron bound state with the copper atom

    Get PDF
    A new relativistic method for calculation of positron binding to atoms is presented. The method combines a configuration interaction treatment of the valence electron and the positron with a many-body perturbation theory description of their interaction with the atomic core. We apply this method to positron binding by the copper atom and obtain the binding energy of 170 meV (+ - 10%). To check the accuracy of the method we use a similar approach to calculate the negative copper ion. The calculated electron affinity is 1.218 eV, in good agreement with the experimental value of 1.236 eV. The problem of convergence of positron-atom bound state calculations is investigated, and means to improve it are discussed. The relativistic character of the method and its satisfactory convergence make it a suitable tool for heavier atoms.Comment: 15 pages, 5 figures, RevTe
    corecore