1,647 research outputs found

    Risk Factors for Hospital Admission After a Fall: A Prospective Cohort Study of Community-Dwelling Older People

    Get PDF
    Background: Falls in later life that require admission to hospital have well-established consequences for future disability and health. The likelihood and severity of a fall will result from the presence of one or more risk factors. The aim of this study is to examine risk factors identified for their ability to prevent falls and to assess whether they are associated with hospital admission after a fall. / Methods: Analyses of data from the English Longitudinal Study of Aging (ELSA), a prospective cohort study. In a sample of 3783 men and women older than 60 years old, a range of potential risk factors measured at Wave 4 (demographic, social environment, physical, and mental functioning) were examined as predictors of fall-related hospitalizations, identified using International Classification of Diseases, 10th Revision (ICD-10) code from linked hospital records in the United Kingdom. Subdistribution hazard models were used to account for competing risk of death. / Results: Several risk factors identified by previous work were confirmed. Suffering from urinary incontinence (subdistribution hazard ratio = 1.49; 95% CI: 1.14, 1.95) and osteoporosis (subdistribution hazard ratio = 1.48; 95% CI: 1.05, 2.07), which are not commonly considered at an early stage of screening, were found to be associated with hospital admission after a fall. Both low and moderate levels of physical activity were also found to somewhat increase the risk of hospital admission after a fall. / Conclusions: Several predictors of having a fall, severe enough to require hospital admission, have been confirmed. In particular, urinary incontinence should be considered at an earlier point in the assessment of risk

    Surface superconducting states in a polycrystalline MgB2_{2} sample

    Full text link
    We report results of dc magnetic and ac linear low-frequency study of a polycrystalline MgB2_2 sample. AC susceptibility measurements at low frequencies, performed under dc fields parallel to the sample surface, provide a clear evidence for surface superconducting states in MgB2_2.Comment: 4 pages and 5 figure

    Scanning Mechanical Microscopy of Laser Ablated Volumes Related to Inductively Coupled Plasma-Mass Spectrometry

    Get PDF
    Scanning mechanical microscopy based on the point by point sampling of the target surface was used to characterize volumes of minerals ablated by laser pulses (Nd: YAG, = 1064 nm, 140 μs pulse-width). Differentiated volumes resulting from vaporization and exfoliation mechanisms were selectively measured. Ablated volumes of natural pyrite (cubic FeS2), marcasite (orthorhombic FeS2) and arsenopyrite AsFeS, were transported into an inductively coupled plasma torch for subsequent mass analysis. The log of the S34 Fe57, and As75 mass intensities was linearly correlated with the log of the dimensions of the vaporized crater induced by the laser shots while large particles had no effect on the measured intensities. A memory effect for As was observed when a nylon tube was used to carry the ablated materials into the plasma torch. The memory effect was decreased by using a copper tube resulting probably from a difference in the electrical properties of the tubing systems leading to a lower adsorption of As within the copper tube than for the case of the nylon tube

    The Importance of Meteorite Collections to Sample Return Missions: Past, Present, and Future Considerations

    Get PDF
    While much of the scientific community s current attention is drawn to sample return missions, it is the existing meteorite and cosmic dust collections that both provide the paradigms to be tested by these missions and the context for interpreting the results. Recent sample returns from the Stardust and Hayabusa missions provided us with new materials and insights about our Solar System history and processes. As an example, Stardust sampled CAIs among the population of cometary grains, requiring extensive and unexpected radial mixing in the early solar nebula. This finding would not have been possible, however, without extensive studies of meteoritic CAIs that established their high-temperature, inner Solar System formation. Samples returned by Stardust also revealed the first evidence of a cometary amino acid, a discovery that would not have been possible with current in situ flight instrument technology. The Hayabusa mission provided the final evidence linking ordinary chondrites and S asteroids, a hypothesis that developed from centuries of collection and laboratory and ground-based telescopic studies. In addition to these scientific findings, studies of existing meteorite collections have defined and refined the analytical techniques essential to studying returned samples. As an example, the fortuitous fall of the Allende CV3 and Murchison CM2 chondrites within months before the return of Apollo samples allowed testing of new state-of-the-art analytical facilities. The results of those studies not only prepared us to better study lunar materials, but unanticipated discoveries changed many of our concepts about the earliest history and processes of the solar nebula. This synergy between existing collections and future space exploration is certainly not limited to sample return missions. Laboratory studies confirmed the existence of meteorites from Mars and raised the provocative possibility of preservation of ancient microbial life. The laboratory studies in turn led to a new wave of Mars exploration that ultimately could lead to sample return focused on evidence for past or present life. This partnership between collections and missions will be increasingly important in the coming decades as we discover new questions to be addressed and identify targets for for both robotic and human exploration . Nowhere is this more true than in the ultimate search for the abiotic and biotic processes that produced life. Existing collections also provide the essential materials for developing and testing new analytical schemes to detect the rare markers of life and distinguish them from abiotic processes. Large collections of meteorites and the new types being identified within these collections, which come to us at a fraction of the cost of a sample return mission, will continue to shape the objectives of future missions and provide new ways of interpreting returned samples

    The AMIGA sample of isolated galaxies. V. Quantification of the isolation

    Get PDF
    The AMIGA project aims to build a well defined and statistically significant reference sample of isolated galaxies in order to estimate the environmental effects on the formation and evolution of galaxies. The goal of this paper is to provide a measure of the environment of the isolated galaxies in the AMIGA sample, quantifying the influence of the candidate neighbours identified in our previous work and their potential effects on the evolution of the primary galaxies. Here we provide a quantification of the isolation degree of the galaxies in this sample. Our starting sample is the Catalogue of Isolated Galaxies (CIG). We used two parameters to estimate the influence exerted by the neighbour galaxies on the CIG galaxy: the local number density of neighbour galaxies and the tidal strength affecting the CIG galaxy. We show that both parameters together provide a comprehensive picture of the environment. For comparison, those parameters have also been derived for galaxies in denser environments such as triplets, groups and clusters. The CIG galaxies show a continuous spectrum of isolation, as quantified by the two parameters, from very isolated to interacting. The fraction of CIG galaxies whose properties are expected to be influenced by the environment is however low (159 out of 950 galaxies). The isolated parameters derived for the comparsion samples gave higher values than for the CIG and we found clear differences for the average values of the 4 samples considered, proving the sensitivity of these parameters. The environment of the galaxies in the CIG has been characterised, using two complementary parameters quantifying the isolation degree, the local number density of the neighbour galaxies and the tidal forces affecting the isolated galaxies. (Abridged)Comment: 10 pages, 12 figures, proposed for acceptance A&

    Effect of DMSO on Protein Structure and Interactions Assessed by Collision-Induced Dissociation and Unfolding

    Get PDF
    Given the frequent use of DMSO in biochemical and biophysical assays, it is desirable to understand the influence of DMSO concentration on the dissociation or unfolding behavior of proteins. In this study, the effects of DMSO on the structure and interactions of avidin and Mycobacterium tuberculosis (Mtb) CYP142A1 were assessed through collision-induced dissociation (CID) and collision-induced unfolding (CIU) as monitored by nanoelectrospray ionization–ion mobility–mass spectrometry (nESI-IM-MS). DMSO concentrations higher than 4% (v/v) destabilize the avidin tetramer toward dissociation and unfolding, via both its effects on charge state distribution (CSD) as well as at the level of individual charge states. In contrast, DMSO both protects against heme loss and increases the stability of CYP142A1 toward unfolding even up to 40% DMSO. Tandem MS/MS experiments showed that DMSO could modify the dissociation pathway of CYP142A1, while CIU revealed the protective effect of the heme group on the structure of CYP142A1.D.S.-H.C. acknowledges the Croucher Foundation and the Cambridge Commonwealth, European and International Trust for receipt of a Croucher Cambridge International Scholarship. M.E.K. was supported by a Commonwealth (University of Cambridge) Scholarship awarded in conjunc-tion with the Cambridge Commonwealth Trust and Cam-bridge Overseas Trust. K.J.M. and A.G.C. were supported by grants from the UK BBSRC (Biotechnology and Biological Sciences Research Council (BB/I019669/1 and BB/I019227/1)

    Microstructure and superconducting properties of hot isostatically pressed MgB2

    Full text link
    Bulk samples of MgB2 have been formed by hot isostatic pressing (HIPping) of commercial powder at 100MPa and 950=B0C. The resulting material is 100% dense with a sharp superconducting transition at 37.5K. Microstructural studies have indicated the presence of small amounts of second phases within the material, namely MgO and B rich compositions, probably MgB4. Magnetisation measurements performed at 20K have revealed values of Jc=1.3 x 106A/cm2 at zero field, and 9.3 x 105A/cm2 at 1T. Magneto optical (MO) studies have shown direct evidence for the superconducting homogeneity and strong intergranular current flow in the material.Comment: 3 pages, 6 figures, text updated, new references included and discussed. Submitted to Superconductor Science and Technolog
    corecore