60,063 research outputs found
Co-located wave and offshore wind farms: A preliminary approach to the shadow effect
In recent years, with the consolidation of offshore wind technology and the progress carried out for wave energy technology, the option of combine both technologies has arisen. This combination rest mainly in two main reasons: in one hand, to increase the sustainability of both energies by means of a more rational harnessing of the natural resources; in the other hand, to reduce the costs of both technologies by sharing some of the most important costs of an offshore project. In addition to these two powerful reasons there are a number of technology synergies between wave and wind systems which makes their combination even more suitable. Co-located projects are one of the alternatives to combine wave-wind systems, and it is specially for these project were so-called shadow effect synergy becomes meaningful. In particular, this paper deals with the co-location of Wave Energy Conversion (WEC) technologies into a conventional offshore wind farm. More specifically, an overtopping type of WEC technology was considered in this work to study the effects of its co-location with a conventional offshore wind park. This study aims to give a preliminary approach to the shadow effect and its implications for both wave and offshore wind energies
The Two-Point Function and the Effective Magnetic Field in Diluted Ising Models on the Cayley Tree
Some results on the two-point function and on the analytic structure of the
momenta of the effective fugacity at the origin for a class of diluted
ferromagnetic Ising models on the Cayley tree are presented.Comment: 22 page
Strong and weak thermalization of infinite non-integrable quantum systems
When a non-integrable system evolves out of equilibrium for a long time,
local observables are expected to attain stationary expectation values,
independent of the details of the initial state. However, intriguing
experimental results with ultracold gases have shown no thermalization in
non-integrable settings, triggering an intense theoretical effort to decide the
question. Here we show that the phenomenology of thermalization in a quantum
system is much richer than its classical counterpart. Using a new numerical
technique, we identify two distinct thermalization regimes, strong and weak,
occurring for different initial states. Strong thermalization, intrinsically
quantum, happens when instantaneous local expectation values converge to the
thermal ones. Weak thermalization, well-known in classical systems, happens
when local expectation values converge to the thermal ones only after time
averaging. Remarkably, we find a third group of states showing no
thermalization, neither strong nor weak, to the time scales one can reliably
simulate.Comment: 12 pages, 21 figures, including additional materia
Preparing projected entangled pair states on a quantum computer
We present a quantum algorithm to prepare injective PEPS on a quantum
computer, a class of open tensor networks representing quantum states. The
run-time of our algorithm scales polynomially with the inverse of the minimum
condition number of the PEPS projectors and, essentially, with the inverse of
the spectral gap of the PEPS' parent Hamiltonian.Comment: 5 pages, 1 figure. To be published in Physical Review Letters.
Removed heuristics, refined run-time boun
ANALYSIS OF TRENDS AND FORECASTS IN COFFEE PRICES AND CONSUMER CONSUMPTION IN THE NORTHEAST AND UNITED STATES
Demand and Price Analysis, Food Consumption/Nutrition/Food Safety,
- …
