research

Cohomological Finiteness Conditions in Bredon Cohomology

Abstract

We show that any soluble group GG of type Bredon-\FP_{\infty} with respect to the family of all virtually cyclic subgroups such that centralizers of infinite order elements are of type \FP_{\infty} must be virtually cyclic. To prove this, we first reduce the problem to the case of polycyclic groups and then we show that a polycyclic-by-finite group with finitely many conjugacy classes of maximal virtually cyclic subgroups is virtually cyclic. Finally we discuss refinements of this result: we only impose the property Bredon-\FP_n for some n3n \leq 3 and restrict to abelian-by-nilpotent, abelian-by-polycyclic or (nilpotent of class 2)-by-abelian groups.Comment: Corrected a mistake in Lemma 2.4 of the previous version, which had an effect on the results in Section 5 (the condition that all centralisers of infinite order elements are of type FPFP_\infty was added

    Similar works