12,751 research outputs found

    Assessment of effects on vegetation of degradation products from alternative fluorocarbons

    Get PDF
    Concern with the effects of fluorides on plants has been devoted to that resulting from dry deposition (mainly with reference to gaseous HF and secondarily with particulate forms). The occurrence of precipitation as rain or mist and the presence of dew or free water on the foliage has mainly been considered with respect to their effects on the accumulation of air-borne fluoride and not with fluoride in wet deposition. That is, precipitation has been viewed primarily with respect to its facilitation of the solution and subsequent absorption of deposits by the foliar tissues or its elution of deposited fluoride from foliage. Accordingly, our evaluation of inorganic fluoride from fluorocarbon degradation rests upon a comparison with what is known about the effects of industrial emissions and what could be considered the natural condition

    Quarks, Gluons and Frustrated Antiferromagnets

    Get PDF
    The Contractor Renormalization Group method (CORE) is used to establish the equivalence of various Hamiltonian free fermion theories and a class of generalized frustrated antiferromagnets. In particular, after a detailed discussion of a simple example, it is argued that a generalized frustrated SU(3) antiferromagnet whose single-site states have the quantum numbers of mesons and baryons is equivalent to a theory of free massless quarks. Furthermore, it is argued that for slight modification of the couplings which define the frustrated antiferromagnet Hamiltonian, the theory becomes a theory of quarks interacting with color gauge-fields.Comment: 21 pages, Late

    Equilibrium Configuration of Black Holes and the Inverse Scattering Method

    Full text link
    The inverse scattering method is applied to the investigation of the equilibrium configuration of black holes. A study of the boundary problem corresponding to this configuration shows that any axially symmetric, stationary solution of the Einstein equations with disconnected event horizon must belong to the class of Belinskii-Zakharov solutions. Relationships between the angular momenta and angular velocities of black holes are derived.Comment: LaTeX, 14 pages, no figure

    The Association of Adult Businesses with Secondary Effects: Legal Doctrine, Social Theory, and Empirical Evidence

    Get PDF
    In the decade since the U.S. Supreme Court’s decision in Alameda Books v. City of Los Angeles, 535 U.S. 425 (2002), the adult entertainment industry has attacked the legal rationale local governments rely upon as the justification for their regulation of adult businesses: that such businesses are associated with so-called negative secondary effects. These attacks have taken a variety of forms, including: trying to subject the studies of secondary effects relied upon by local governments to the Daubert standard for admission of scientific evidence in federal litigation; producing studies that purport to show no association between adult businesses and negative secondary effects in a given jurisdiction; and claims that distinct business models and/or specific local conditions are not associated with the secondary effects demonstrated in the studies relied on by many local governments. In this Article, we demonstrate that, contrary to the industry’s claims, methodologically appropriate studies confirm criminological theory’s prediction that adult businesses are associated with heightened incidences of crime regardless of jurisdiction, business model or location and thus, such studies should have legal and policy effects supporting regulation of adult businesses

    On Unitary Evolution of a Massless Scalar Field In A Schwarzschild Background: Hawking Radiation and the Information Paradox

    Full text link
    We develop a Hamiltonian formalism which can be used to discuss the physics of a massless scalar field in a gravitational background of a Schwarzschild black hole. Using this formalism we show that the time evolution of the system is unitary and yet all known results such as the existence of Hawking radiation can be readily understood. We then point out that the Hamiltonian formalism leads to interesting observations about black hole entropy and the information paradox.Comment: 45 pages, revte

    CORE and the Haldane Conjecture

    Get PDF
    The Contractor Renormalization group formalism (CORE) is a real-space renormalization group method which is the Hamiltonian analogue of the Wilson exact renormalization group equations. In an earlier paper\cite{QGAF} I showed that the Contractor Renormalization group (CORE) method could be used to map a theory of free quarks, and quarks interacting with gluons, into a generalized frustrated Heisenberg antiferromagnet (HAF) and proposed using CORE methods to study these theories. Since generalizations of HAF's exhibit all sorts of subtle behavior which, from a continuum point of view, are related to topological properties of the theory, it is important to know that CORE can be used to extract this physics. In this paper I show that despite the folklore which asserts that all real-space renormalization group schemes are necessarily inaccurate, simple Contractor Renormalization group (CORE) computations can give highly accurate results even if one only keeps a small number of states per block and a few terms in the cluster expansion. In addition I argue that even very simple CORE computations give a much better qualitative understanding of the physics than naive renormalization group methods. In particular I show that the simplest CORE computation yields a first principles understanding of how the famous Haldane conjecture works for the case of the spin-1/2 and spin-1 HAF.Comment: 36 pages, 4 figures, 5 tables, latex; extensive additions to conten

    Fidelity Decay as an Efficient Indicator of Quantum Chaos

    Full text link
    Recent work has connected the type of fidelity decay in perturbed quantum models to the presence of chaos in the associated classical models. We demonstrate that a system's rate of fidelity decay under repeated perturbations may be measured efficiently on a quantum information processor, and analyze the conditions under which this indicator is a reliable probe of quantum chaos and related statistical properties of the unperturbed system. The type and rate of the decay are not dependent on the eigenvalue statistics of the unperturbed system, but depend on the system's eigenvector statistics in the eigenbasis of the perturbation operator. For random eigenvector statistics the decay is exponential with a rate fixed precisely by the variance of the perturbation's energy spectrum. Hence, even classically regular models can exhibit an exponential fidelity decay under generic quantum perturbations. These results clarify which perturbations can distinguish classically regular and chaotic quantum systems.Comment: 4 pages, 3 figures, LaTeX; published version (revised introduction and discussion

    A note on the extension of the polar decomposition for the multidimensional Burgers equation

    Full text link
    It is shown that the generalizations to more than one space dimension of the pole decomposition for the Burgers equation with finite viscosity and no force are of the form u = -2 viscosity grad log P, where the P's are explicitly known algebraic (or trigonometric) polynomials in the space variables with polynomial (or exponential) dependence on time. Such solutions have polar singularities on complex algebraic varieties.Comment: 3 pages; minor formatting and typos corrected. Submitted to Phys. Rev. E (Rapid Comm.

    A general framework for nonholonomic mechanics: Nonholonomic Systems on Lie affgebroids

    Get PDF
    This paper presents a geometric description of Lagrangian and Hamiltonian systems on Lie affgebroids subject to affine nonholonomic constraints. We define the notion of nonholonomically constrained system, and characterize regularity conditions that guarantee that the dynamics of the system can be obtained as a suitable projection of the unconstrained dynamics. It is shown that one can define an almost aff-Poisson bracket on the constraint AV-bundle, which plays a prominent role in the description of nonholonomic dynamics. Moreover, these developments give a general description of nonholonomic systems and the unified treatment permits to study nonholonomic systems after or before reduction in the same framework. Also, it is not necessary to distinguish between linear or affine constraints and the methods are valid for explicitly time-dependent systems.Comment: 50 page

    Radio frequency association of heteronuclear Feshbach molecules

    Get PDF
    We present a detailed analysis of the production efficiency of weakly bound heteronuclear KRb-Feshbach molecules using radio frequency association in a harmonic trap. The efficiency was measured in a wide range of temperatures, binding energies and radio frequencies. A comprehensive analytical model is presented, explaining the observed asymmetric spectra and achieving good quantitative agreement with the measured production rates. This model provides a deep understanding of the molecule association process and paves the way for future experiments which rely on Feshbach molecules e.g. for the production of deeply bound molecules.Comment: 5 pages, 4 figure
    • …
    corecore