1,164 research outputs found
Most Complex Non-Returning Regular Languages
A regular language is non-returning if in the minimal deterministic
finite automaton accepting it there are no transitions into the initial state.
Eom, Han and Jir\'askov\'a derived upper bounds on the state complexity of
boolean operations and Kleene star, and proved that these bounds are tight
using two different binary witnesses. They derived upper bounds for
concatenation and reversal using three different ternary witnesses. These five
witnesses use a total of six different transformations. We show that for each
there exists a ternary witness of state complexity that meets the
bound for reversal and that at least three letters are needed to meet this
bound. Moreover, the restrictions of this witness to binary alphabets meet the
bounds for product, star, and boolean operations. We also derive tight upper
bounds on the state complexity of binary operations that take arguments with
different alphabets. We prove that the maximal syntactic semigroup of a
non-returning language has elements and requires at least
generators. We find the maximal state complexities of atoms of
non-returning languages. Finally, we show that there exists a most complex
non-returning language that meets the bounds for all these complexity measures.Comment: 22 pages, 6 figure
Checking Whether an Automaton Is Monotonic Is NP-complete
An automaton is monotonic if its states can be arranged in a linear order
that is preserved by the action of every letter. We prove that the problem of
deciding whether a given automaton is monotonic is NP-complete. The same result
is obtained for oriented automata, whose states can be arranged in a cyclic
order. Moreover, both problems remain hard under the restriction to binary
input alphabets.Comment: 13 pages, 4 figures. CIAA 2015. The final publication is available at
http://link.springer.com/chapter/10.1007/978-3-319-22360-5_2
Data Portraits and Intermediary Topics: Encouraging Exploration of Politically Diverse Profiles
In micro-blogging platforms, people connect and interact with others.
However, due to cognitive biases, they tend to interact with like-minded people
and read agreeable information only. Many efforts to make people connect with
those who think differently have not worked well. In this paper, we
hypothesize, first, that previous approaches have not worked because they have
been direct -- they have tried to explicitly connect people with those having
opposing views on sensitive issues. Second, that neither recommendation or
presentation of information by themselves are enough to encourage behavioral
change. We propose a platform that mixes a recommender algorithm and a
visualization-based user interface to explore recommendations. It recommends
politically diverse profiles in terms of distance of latent topics, and
displays those recommendations in a visual representation of each user's
personal content. We performed an "in the wild" evaluation of this platform,
and found that people explored more recommendations when using a biased
algorithm instead of ours. In line with our hypothesis, we also found that the
mixture of our recommender algorithm and our user interface, allowed
politically interested users to exhibit an unbiased exploration of the
recommended profiles. Finally, our results contribute insights in two aspects:
first, which individual differences are important when designing platforms
aimed at behavioral change; and second, which algorithms and user interfaces
should be mixed to help users avoid cognitive mechanisms that lead to biased
behavior.Comment: 12 pages, 7 figures. To be presented at ACM Intelligent User
Interfaces 201
Synchronization Problems in Automata without Non-trivial Cycles
We study the computational complexity of various problems related to
synchronization of weakly acyclic automata, a subclass of widely studied
aperiodic automata. We provide upper and lower bounds on the length of a
shortest word synchronizing a weakly acyclic automaton or, more generally, a
subset of its states, and show that the problem of approximating this length is
hard. We investigate the complexity of finding a synchronizing set of states of
maximum size. We also show inapproximability of the problem of computing the
rank of a subset of states in a binary weakly acyclic automaton and prove that
several problems related to recognizing a synchronizing subset of states in
such automata are NP-complete.Comment: Extended and corrected version, including arXiv:1608.00889.
Conference version was published at CIAA 2017, LNCS vol. 10329, pages
188-200, 201
Quotient Complexity of Regular Languages
The past research on the state complexity of operations on regular languages
is examined, and a new approach based on an old method (derivatives of regular
expressions) is presented. Since state complexity is a property of a language,
it is appropriate to define it in formal-language terms as the number of
distinct quotients of the language, and to call it "quotient complexity". The
problem of finding the quotient complexity of a language f(K,L) is considered,
where K and L are regular languages and f is a regular operation, for example,
union or concatenation. Since quotients can be represented by derivatives, one
can find a formula for the typical quotient of f(K,L) in terms of the quotients
of K and L. To obtain an upper bound on the number of quotients of f(K,L) all
one has to do is count how many such quotients are possible, and this makes
automaton constructions unnecessary. The advantages of this point of view are
illustrated by many examples. Moreover, new general observations are presented
to help in the estimation of the upper bounds on quotient complexity of regular
operations
Testing the Equivalence of Regular Languages
The minimal deterministic finite automaton is generally used to determine
regular languages equality. Antimirov and Mosses proposed a rewrite system for
deciding regular expressions equivalence of which Almeida et al. presented an
improved variant. Hopcroft and Karp proposed an almost linear algorithm for
testing the equivalence of two deterministic finite automata that avoids
minimisation. In this paper we improve the best-case running time, present an
extension of this algorithm to non-deterministic finite automata, and establish
a relationship between this algorithm and the one proposed in Almeida et al. We
also present some experimental comparative results. All these algorithms are
closely related with the recent coalgebraic approach to automata proposed by
Rutten
Completeness and Incompleteness of Synchronous Kleene Algebra
Synchronous Kleene algebra (SKA), an extension of Kleene algebra (KA), was
proposed by Prisacariu as a tool for reasoning about programs that may execute
synchronously, i.e., in lock-step. We provide a countermodel witnessing that
the axioms of SKA are incomplete w.r.t. its language semantics, by exploiting a
lack of interaction between the synchronous product operator and the Kleene
star. We then propose an alternative set of axioms for SKA, based on Salomaa's
axiomatisation of regular languages, and show that these provide a sound and
complete characterisation w.r.t. the original language semantics.Comment: Accepted at MPC 201
A Kleene theorem for polynomial coalgebras
For polynomial functors G, we show how to generalize the classical notion of regular expression to G-coalgebras. We introduce a language of expressions for describing elements of the final G-coalgebra and, analogously to Kleene’s theorem, we show the correspondence between expressions and finite G-coalgebras
Partial derivative automata formalized in Coq
In this paper we present a computer assisted proof of the correctness of a partial derivative automata construction from a regular expression within the Coq proof assistant. This proof is part of a for- malization of Kleene algebra and regular languages in Coq towards their usage in program certification.Fundação para a Ciência e Tecnologia (FCT)
Program POSI, RESCUE (PTDC/EIA/65862/2006), SFRH/BD/33233/2007
Brzozowski Algorithm Is Generically Super-Polynomial Deterministic Automata
International audienceWe study the number of states of the minimal automaton of the mirror of a rational language recognized by a random deterministic automaton with n states. We prove that, for any d > 0, the probability that this number of states is greater than nd tends to 1 as n tends to infinity. As a consequence, the generic and average complexities of Brzozowski minimization algorithm are super-polynomial for the uniform distribution on deterministic automata
- …
