1,164 research outputs found

    Most Complex Non-Returning Regular Languages

    Get PDF
    A regular language LL is non-returning if in the minimal deterministic finite automaton accepting it there are no transitions into the initial state. Eom, Han and Jir\'askov\'a derived upper bounds on the state complexity of boolean operations and Kleene star, and proved that these bounds are tight using two different binary witnesses. They derived upper bounds for concatenation and reversal using three different ternary witnesses. These five witnesses use a total of six different transformations. We show that for each n4n\ge 4 there exists a ternary witness of state complexity nn that meets the bound for reversal and that at least three letters are needed to meet this bound. Moreover, the restrictions of this witness to binary alphabets meet the bounds for product, star, and boolean operations. We also derive tight upper bounds on the state complexity of binary operations that take arguments with different alphabets. We prove that the maximal syntactic semigroup of a non-returning language has (n1)n(n-1)^n elements and requires at least (n2)\binom{n}{2} generators. We find the maximal state complexities of atoms of non-returning languages. Finally, we show that there exists a most complex non-returning language that meets the bounds for all these complexity measures.Comment: 22 pages, 6 figure

    Checking Whether an Automaton Is Monotonic Is NP-complete

    Full text link
    An automaton is monotonic if its states can be arranged in a linear order that is preserved by the action of every letter. We prove that the problem of deciding whether a given automaton is monotonic is NP-complete. The same result is obtained for oriented automata, whose states can be arranged in a cyclic order. Moreover, both problems remain hard under the restriction to binary input alphabets.Comment: 13 pages, 4 figures. CIAA 2015. The final publication is available at http://link.springer.com/chapter/10.1007/978-3-319-22360-5_2

    Data Portraits and Intermediary Topics: Encouraging Exploration of Politically Diverse Profiles

    Full text link
    In micro-blogging platforms, people connect and interact with others. However, due to cognitive biases, they tend to interact with like-minded people and read agreeable information only. Many efforts to make people connect with those who think differently have not worked well. In this paper, we hypothesize, first, that previous approaches have not worked because they have been direct -- they have tried to explicitly connect people with those having opposing views on sensitive issues. Second, that neither recommendation or presentation of information by themselves are enough to encourage behavioral change. We propose a platform that mixes a recommender algorithm and a visualization-based user interface to explore recommendations. It recommends politically diverse profiles in terms of distance of latent topics, and displays those recommendations in a visual representation of each user's personal content. We performed an "in the wild" evaluation of this platform, and found that people explored more recommendations when using a biased algorithm instead of ours. In line with our hypothesis, we also found that the mixture of our recommender algorithm and our user interface, allowed politically interested users to exhibit an unbiased exploration of the recommended profiles. Finally, our results contribute insights in two aspects: first, which individual differences are important when designing platforms aimed at behavioral change; and second, which algorithms and user interfaces should be mixed to help users avoid cognitive mechanisms that lead to biased behavior.Comment: 12 pages, 7 figures. To be presented at ACM Intelligent User Interfaces 201

    Synchronization Problems in Automata without Non-trivial Cycles

    Full text link
    We study the computational complexity of various problems related to synchronization of weakly acyclic automata, a subclass of widely studied aperiodic automata. We provide upper and lower bounds on the length of a shortest word synchronizing a weakly acyclic automaton or, more generally, a subset of its states, and show that the problem of approximating this length is hard. We investigate the complexity of finding a synchronizing set of states of maximum size. We also show inapproximability of the problem of computing the rank of a subset of states in a binary weakly acyclic automaton and prove that several problems related to recognizing a synchronizing subset of states in such automata are NP-complete.Comment: Extended and corrected version, including arXiv:1608.00889. Conference version was published at CIAA 2017, LNCS vol. 10329, pages 188-200, 201

    Quotient Complexity of Regular Languages

    Full text link
    The past research on the state complexity of operations on regular languages is examined, and a new approach based on an old method (derivatives of regular expressions) is presented. Since state complexity is a property of a language, it is appropriate to define it in formal-language terms as the number of distinct quotients of the language, and to call it "quotient complexity". The problem of finding the quotient complexity of a language f(K,L) is considered, where K and L are regular languages and f is a regular operation, for example, union or concatenation. Since quotients can be represented by derivatives, one can find a formula for the typical quotient of f(K,L) in terms of the quotients of K and L. To obtain an upper bound on the number of quotients of f(K,L) all one has to do is count how many such quotients are possible, and this makes automaton constructions unnecessary. The advantages of this point of view are illustrated by many examples. Moreover, new general observations are presented to help in the estimation of the upper bounds on quotient complexity of regular operations

    Testing the Equivalence of Regular Languages

    Full text link
    The minimal deterministic finite automaton is generally used to determine regular languages equality. Antimirov and Mosses proposed a rewrite system for deciding regular expressions equivalence of which Almeida et al. presented an improved variant. Hopcroft and Karp proposed an almost linear algorithm for testing the equivalence of two deterministic finite automata that avoids minimisation. In this paper we improve the best-case running time, present an extension of this algorithm to non-deterministic finite automata, and establish a relationship between this algorithm and the one proposed in Almeida et al. We also present some experimental comparative results. All these algorithms are closely related with the recent coalgebraic approach to automata proposed by Rutten

    Completeness and Incompleteness of Synchronous Kleene Algebra

    Get PDF
    Synchronous Kleene algebra (SKA), an extension of Kleene algebra (KA), was proposed by Prisacariu as a tool for reasoning about programs that may execute synchronously, i.e., in lock-step. We provide a countermodel witnessing that the axioms of SKA are incomplete w.r.t. its language semantics, by exploiting a lack of interaction between the synchronous product operator and the Kleene star. We then propose an alternative set of axioms for SKA, based on Salomaa's axiomatisation of regular languages, and show that these provide a sound and complete characterisation w.r.t. the original language semantics.Comment: Accepted at MPC 201

    A Kleene theorem for polynomial coalgebras

    Get PDF
    For polynomial functors G, we show how to generalize the classical notion of regular expression to G-coalgebras. We introduce a language of expressions for describing elements of the final G-coalgebra and, analogously to Kleene’s theorem, we show the correspondence between expressions and finite G-coalgebras

    Partial derivative automata formalized in Coq

    Get PDF
    In this paper we present a computer assisted proof of the correctness of a partial derivative automata construction from a regular expression within the Coq proof assistant. This proof is part of a for- malization of Kleene algebra and regular languages in Coq towards their usage in program certification.Fundação para a Ciência e Tecnologia (FCT) Program POSI, RESCUE (PTDC/EIA/65862/2006), SFRH/BD/33233/2007

    Brzozowski Algorithm Is Generically Super-Polynomial Deterministic Automata

    Get PDF
    International audienceWe study the number of states of the minimal automaton of the mirror of a rational language recognized by a random deterministic automaton with n states. We prove that, for any d > 0, the probability that this number of states is greater than nd tends to 1 as n tends to infinity. As a consequence, the generic and average complexities of Brzozowski minimization algorithm are super-polynomial for the uniform distribution on deterministic automata
    corecore