330 research outputs found

    Functional requirements document for the Earth Observing System Data and Information System (EOSDIS) Scientific Computing Facilities (SCF) of the NASA/MSFC Earth Science and Applications Division, 1992

    Get PDF
    Five scientists at MSFC/ESAD have EOS SCF investigator status. Each SCF has unique tasks which require the establishment of a computing facility dedicated to accomplishing those tasks. A SCF Working Group was established at ESAD with the charter of defining the computing requirements of the individual SCFs and recommending options for meeting these requirements. The primary goal of the working group was to determine which computing needs can be satisfied using either shared resources or separate but compatible resources, and which needs require unique individual resources. The requirements investigated included CPU-intensive vector and scalar processing, visualization, data storage, connectivity, and I/O peripherals. A review of computer industry directions and a market survey of computing hardware provided information regarding important industry standards and candidate computing platforms. It was determined that the total SCF computing requirements might be most effectively met using a hierarchy consisting of shared and individual resources. This hierarchy is composed of five major system types: (1) a supercomputer class vector processor; (2) a high-end scalar multiprocessor workstation; (3) a file server; (4) a few medium- to high-end visualization workstations; and (5) several low- to medium-range personal graphics workstations. Specific recommendations for meeting the needs of each of these types are presented

    Vector-pseudoscalar two-meson distribution amplitudes in three-body BB meson decays

    Full text link
    We study three-body nonleptonic decays BVVPB\to VVP by introducing two-meson distribution amplitudes for the vector-pseudoscalar pair, such that the analysis is simplified into the one for two-body decays. The twist-2 and twist-3 ϕK\phi K two-meson distribution amplitudes, associated with longitudinally and transversely polarized ϕ\phi mesons, are constrained by the experimental data of the τϕKν\tau\to\phi K\nu and BϕKγB\to\phi K\gamma branching ratios. We then predict the BϕKγB\to\phi K\gamma and BϕϕKB\to\phi\phi K decay spectra in the ϕK\phi K invariant mass. Since the resonant contribution in the ϕK\phi K channel is negligible, the above decay spectra provide a clean test for the application of two-meson distribution amplitudes to three-body BB meson decays.Comment: 9 pages, 1 figure, Revtex4, version to appear in PR

    Multivariate Fitting and the Error Matrix in Global Analysis of Data

    Get PDF
    When a large body of data from diverse experiments is analyzed using a theoretical model with many parameters, the standard error matrix method and the general tools for evaluating errors may become inadequate. We present an iterative method that significantly improves the reliability of the error matrix calculation. To obtain even better estimates of the uncertainties on predictions of physical observables, we also present a Lagrange multiplier method that explores the entire parameter space and avoids the linear approximations assumed in conventional error propagation calculations. These methods are illustrated by an example from the global analysis of parton distribution functions.Comment: 13 pages, 5 figures, Latex; minor clarifications, fortran program made available; Normalization of Hessian matrix changed to HEP standar

    Cost Analysis In A Multi-Mission Operations Environment

    Get PDF
    Spacecraft control centers have evolved from dedicated, single-mission or single missiontype support to multi-mission, service-oriented support for operating a variety of mission types. At the same time, available money for projects is shrinking and competition for new missions is increasing. These factors drive the need for an accurate and flexible model to support estimating service costs for new or extended missions; the cost model in turn drives the need for an accurate and efficient approach to service cost analysis. The National Aeronautics and Space Administration (NASA) Huntsville Operations Support Center (HOSC) at Marshall Space Flight Center (MSFC) provides operations services to a variety of customers around the world. HOSC customers range from launch vehicle test flights; to International Space Station (ISS) payloads; to small, short duration missions; and has included long duration flagship missions. The HOSC recently completed a detailed analysis of service costs as part of the development of a complete service cost model. The cost analysis process required the team to address a number of issues. One of the primary issues involves the difficulty of reverse engineering individual mission costs in a highly efficient multimission environment, along with a related issue of the value of detailed metrics or data to the cost model versus the cost of obtaining accurate data. Another concern is the difficulty of balancing costs between missions of different types and size and extrapolating costs to different mission types. The cost analysis also had to address issues relating to providing shared, cloud-like services in a government environment, and then assigning an uncertainty or risk factor to cost estimates that are based on current technology, but will be executed using future technology. Finally the cost analysis needed to consider how to validate the resulting cost models taking into account the non-homogeneous nature of the available cost data and the decreasing flight rate. This paper presents the issues encountered during the HOSC cost analysis process, and the associated lessons learned. These lessons can be used when planning for a new multi-mission operations center or in the transformation from a dedicated control center to multi-center operations, as an aid in defining processes that support future cost analysis and estimation. The lessons can also be used by mature serviceoriented, multi-mission control centers to streamline or refine their cost analysis process

    Wide-angle elastic scattering and color randomization

    Get PDF
    Baryon-baryon elastic scattering is considered in the independent scattering (Landshoff) mechanism. It is suggested that for scattering at moderate energies, direct and interchange quark channels contribute with equal color coefficients because the quark color is randomized by soft gluon exchange during the hadronization stage. With this assumption, it is shown that the ratio of cross sections Rpp/ppR_{\overline{p} p/ p p} at CM angle θ=900\theta = 90^0 decreases from a high energy value of R_{\pbar p / pp} \approx 1/2.7, down to R_{\pbar p / pp} \approx 1/28, compatible with experimental data at moderate energies. This sizable fall in the ratio seems to be characteristic of the Landshoff mechanism, in which changes at the quark level have a strong effect precisely because the hadronic process occurs via multiple quark scatterings. The effect of color randomization on the angular distribution of proton-proton elastic scattering and the cross section ratio Rnp/ppR_{np/pp} is also discussed.Comment: 18 pages, latex2e, 4 uuencoded figures, include

    Extracting the Proton ubar content from pp->Direct Photon plus Jet Cross Sections

    Full text link
    An analysis procedure is proposed to measure the antiquark distributions in the proton over the region 0.01 < x < 0.1. The procedure involves the measurement of high p_t asymmetric direct photon and jet final states in pp interactions. This measurement can be made at the RHIC collider running in pp mode at an energy of sqrt(s)=500 GeV/c. This analysis identifies a region of phase space where the contribution from quark-antiquark annihilation uncharacteristically approaches the magnitude of the contribution from the leading process, quark-gluon Compton scattering. The forward-backward angular asymmetry in the parton center of mass is sensitive to the antiquark content of the proton and the ubar parton density function can be extracted.Comment: 21 pages, 7 figure

    Production and Two-photon Decay of the MSSM Scalar Higgs Bosons at the LHC

    Get PDF
    We consider the production and two-photon decay of the CPCP-even Higgs bosons (h0h^0 and H0H^0) of the Minimal Supersymmetric Standard Model (MSSM) at the Large Hadron Collider. We study in detail the dependence of the cross section on various parameters of the MSSM, especially the dependence on the mixing effects in the squark sector due to the Higgs bilinear parameter μ\mu and the soft supersymmetry breaking parameter AA. We find that the cross section for the production of these Higgs bosons has a significant dependence on the parameters which determine the chiral mixing in the squark sector. The cross section times the two-photon branching ratio of h0h^0 is of the order of 15--25~fb in much of the parameter space that remains after imposing the present experimental constraints. For the H0H^0 the two-photon branching ratio is only significant if the H0H^0 is light, but then the cross section times the branching ratio may exceed 200~fb. The QCD corrections due to quark loop contributions are known to increase the cross section by 50\%. We find the dependence of the cross section on the gluon distribution function used to be rather insignificant.Comment: 16 pages, LaTex, plus 9 uuencoded figures attached Full ps file available at ftp://vsfys1.fi.uib.no/anonymous/pub/ as nordita-9548.ps or nordita-9548.ps-gz or via http://vsfys1.fi.uib.no/thpubl/publications.htm

    Consistent Analysis of the BπB\to\pi Transition Form Factor in the Whole Physical Region

    Full text link
    In the paper, we show that the BπB\to\pi transition form factor can be calculated by using the different approach in the different q2q^2 regions and they are consistent with each other in the whole physical region. For the BπB\to\pi transition form factor in the large recoil regions, one can apply the PQCD approach, where the transverse momentum dependence for both the hard scattering part and the non-perturbative wavefunction, the Sudakov effects and the threshold effects are included to regulate the endpoint singularity and to derive a more reliable PQCD result. Pionic twist-3 contributions are carefully studied with a better endpoint behavior wavefunction for Ψp\Psi_p and we find that its contribution is less than the leading twist contribution. Both the two wavefunctions ΨB\Psi_B and ΨˉB\bar\Psi_B of the B meson can give sizable contributions to the BπB\to\pi transition form factor and should be kept for a better understanding of the B decays. The present obtained PQCD results can match with both the QCD light-cone sum rule results and the extrapolated lattice QCD results in the large recoil regions.Comment: 18pages, 6 figure

    Using Rapidity Gaps to Distinguish Between Higgs Production by W and Gluon Fusion

    Get PDF
    The possibility of distinguishing between two higgs production mechanisms, W fusion and gluon fusion, is investigated using the Monte Carlo event generator PYTHIA. It is shown that, considering the designed CM energy and luminosity for the LHC, it is not possible to distinguish between the two higgs production processes as, for a given integrated luminosity, they lead to the same number of events containing a rapidity gap.Comment: uudecoded compressed tar file containing a tex file and 6 figure files. Two more figures, avaiable from the authors upon reques

    DTUJET--93 Sampling inelastic proton--proton and antiproton--proton collisions according to the two--component Dual Parton Model

    Full text link
    A new version of a Monte Carlo Program for hadronic multi-particle production is presented. It is based on the two-component Dual Parton Model which includes the dual topological unitarization of soft and hard cross sections. The model treats both soft (low pp_{\perp}) and hard (minijet, large pp_{\perp}) processes in a unified and consistent way. The unified description is important at TeV-energies of hadron colliders, where the hard perturbative cross sections of QCD become large and comparable to the total cross sections.Comment: 20 pages , PHYSZZX, SI-93-
    corecore