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Spacecraft control centers have evolved from dedicated, single-mission or single mission-
type support to multi-mission, service-oriented support for operating a variety of mission 
types. At the same time, available money for projects is shrinking and competition for new 
missions is increasing. These factors drive the need for an accurate and flexible model to 
support estimating service costs for new or extended missions; the cost model in turn drives 
the need for an accurate and efficient approach to service cost analysis. The National 
Aeronautics and Space Administration (NASA) Huntsville Operations Support Center 
(HOSC) at Marshall Space Flight Center (MSFC) provides operations services to a variety 
of customers around the world. HOSC customers range from launch vehicle test flights; to 
International Space Station (ISS) payloads; to small, short duration missions; and has 
included long duration flagship missions. The HOSC recently completed a detailed analysis 
of service costs as part of the development of a complete service cost model. The cost analysis 
process required the team to address a number of issues. One of the primary issues involves 
the difficulty of reverse engineering individual mission costs in a highly efficient multi-
mission environment, along with a related issue of the value of detailed metrics or data to the 
cost model versus the cost of obtaining accurate data. Another concern is the difficulty of 
balancing costs between missions of different types and size and extrapolating costs to 
different mission types. The cost analysis also had to address issues relating to providing 
shared, cloud-like services in a government environment, and then assigning an uncertainty 
or risk factor to cost estimates that are based on current technology, but will be executed 
using future technology. Finally the cost analysis needed to consider how to validate the 
resulting cost models taking into account the non-homogeneous nature of the available cost 
data and the decreasing flight rate. This paper presents the issues encountered during the 
HOSC cost analysis process, and the associated lessons learned. These lessons can be used 
when planning for a new multi-mission operations center or in the transformation from a 
dedicated control center to multi-center operations, as an aid in defining processes that 
support future cost analysis and estimation. The lessons can also be used by mature service-
oriented, multi-mission control centers to streamline or refine their cost analysis process.   
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I. Introduction 
pacecraft control centers have evolved from dedicated, single-mission or single mission-type support to multi-
mission, service-oriented support for operating a variety of mission types. At the same time, available money for 
projects is shrinking and competition for new missions is increasing. More missions are looking for alternative 

low cost approaches to mission operations, and require a rapid response to inquiries about the cost of using control 
center services. These factors drive the need for an accurate and flexible model to support estimating service costs 
for new or extended missions; the cost model in turn drives the need for an accurate and efficient approach to 
service cost analysis.  

The National Aeronautics and Space Administration (NASA) Huntsville Operations Support Center (HOSC) at 
Marshall Space Flight Center (MSFC) recently completed a detailed analysis of service costs as part of the 
development of a complete service cost model. The cost analysis process required the team to address a number of 
issues with broad applicability across space missions: 

1) Reverse engineering individual mission costs in a multi-mission environment 
2) Extrapolating costs to different mission types 
3) Cost estimation for virtual, shared resources 
4) Restrictions specific to government facilities 
5) Cost model validation 

The following sections will discuss each of these issues, relevant trades, and the lessons learned from developing 
and using the cost model. 

Background 
The HOSC has been providing operations services to a variety of customers around the world since 1960 (see 

Fig. 1). Its customers have included NASA flagship missions like the Hubble Space Telescope and the Chandra X-
ray Observatory, small science missions like the Fast Affordable Science and Technology Satellite (FASTSAT), and 
the Space Transportation System (STS). The HOSC currently provides the Payload Operations Center (POC) for 
coordinating science operations for International Space Station (ISS) payloads, and will provide the Engineering 
Support Center (ESC) for the new NASA heavy lift Space Launch System (SLS).  

S 

 
Figure 1. HOSC Customers. The HOSC currently supports both local operations and remote operations 
for customers around the world. 
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Given the range of mission 
types supported, the HOSC 
services have been designed 
to be highly configurable. 
Services include: 

1) Secure networks 
2) Data storage, 

retrieval, and archive 
3) Database engineering 
4) Command and 

telemetry 
5) Information 

management 
Services may support remote 
or local operations, and 
include lights out, 8x5, and 
24x7 operations. Depending 
on the mission concept and 
the level of support, the 
services include engineering 
and operations labor, shared 
or dedicated hardware, and 
may include facilities. Fig. 2 
illustrates the increasing support provided for four HOSC service levels; the actual services can be combined as 
necessary to meet the mission requirements. 

The cost model is designed to provide estimates of all required resources and associated costs for the HOSC 
services over the full mission life cycle, including labor, hardware (including furnishings, licenses, and hardware 
refresh), and facilities. It starts with a high-level definition of the mission concept, mission characteristics (e.g, 
payload versus full mission, orbiter versus deep space), mission complexity (e.g., number of instruments, operations 
team size, number of operations sites), and a service level. The service levels provide the initial specification of the 
operational support requirements: 

1) Basic Service Level includes network services only 
2) Basic+ Service Level includes network and data storage, retrieval, and archive services 
3) Standard Service Level includes all HOSC services, except for information management 
4) Standard+ Service Level includes all HOSC services 

While the service levels provide a starting point, they can be modified to refine (add, delete, or modify) the actual 
services and support required for a mission. The  model then expands this high-level definition to the detailed 
facility, hardware or labor resources and associated costs. In addition, the cost model can be used to look at 
resources across multiple potential missions to identify conflicts in the use of resources (labor, hardware, or 
facilities) as new customers are added for HOSC services. Obviously, a cost model for these services must be 
equally configurable in order to provide accurate and competitive estimates of service costs over a full mission life 
cycle for a variety of missions or payloads. Specifying such a model and the algorithms supporting the model is 
relatively straightforward. The issues arise when populating the model parameters across the range of potential 
mission type and validating the model results. 

II. Multi-Mission Cost Modeling Issues 

A. Reverse Engineering Mission Costs in a Multi-Mission Environment 
The primary customers for HOSC operations have been the ISS science payloads. Despite the distribution world-

wide of remote users and the inherent uniqueness of each payload, for most there is little variation in the support 
provided by the HOSC for each payload. Each increment (set of 20 to 30 new or continuing payloads) undergoes the 
same end-to-end process of initiating accounts, identifying unique payload characteristics (if any), training new 
investigators, and supporting 24x7 operations for all active onboard payloads. Because of this similarity, the 
processes for providing services to payload customers for each new increment without interrupting ongoing payload 
operations have been highly optimized over the years. Hardware and labor resources are shared by all payload 

 
Figure 2. HOSC Service Configurations. The HOSC services have been adapted to 
a wide range of mission sizes and mission concepts, from a simple bent pipe for 
secure transmission of data between users and a space or ground asset, to full 
mission operations and mission data support for both local and remote users. 
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customers, and paid for by one funding source: the ISS Program, making it difficult to separate out the costs 
associated with a single payload. 

Support for the STS was a very different paradigm. There was one customer: the engineering team at MSFC. 
Operations were intermittent, driven by real-time support during each shuttle flight and access to archived data for 
analysis of engine performance between flights. The STS support is in the process of being replaced and re-
engineered to provide similar Engineering Support Facility (ESF) capabilities for the Space Launch System (SLS). 
As a dedicated, single user mission, hardware and labor resources are easily isolated for the STS, but are not directly 
applicable to the SLS due to modernization of the technology and service approach. 

The HOSC has supported several robotic satellite missions over the years, each unique. The Chandra X-Ray 
Observatory, one of the Great Observatory missions, was one of the first major robotic satellites operated using 
HOSC software, and it has been in operation since 1999. However, it is operated standalone out of Cambridge, MA, 
and other than the original software does not currently use HOSC facilities or services. At the other end of the 
spectrum, NASA’s recent FASTSAT mission, was developed at MSFC in only 14 months and operated using HOSC 
facilities and services for its 2 year mission life. It is a prime example of rapid engineering and deployment for small 
satellites, but only provides one cost data point. 

One of the first issues encountered while developing the cost models was reverse engineering these individual 
mission costs to provide meaningful information about labor resources required across the full spectrum of potential 
mission types. Labor data was available by customer, but primarily it was aggregate data across the customer. The 
most complete set of available labor data was for ISS support; however, labor data in the highly-optimized ISS 
paradigm was not directly applicable to other mission scenarios. In addition, mission funding (and staffing) often 
was capped and therefore support was resource-limited, rather than being product-driven, and the goal was to avoid 
propagating these limitations to future missions. The available labor data was highly variable over time, with the 
high-level of support around key events (gate reviews or major technical interchanges), and significantly less 
support between these events, making extrapolation to different mission development schedules difficult. To 
compensate for these issues, we used a 
combination of analysis of actual data for 
past and current missions, and detailed 
interviews of engineering leads concerning 
the activities and products for supporting 
missions of various types throughout each 
phase of the mission life cycle. The actual 
labor data included engineering and 
operations support and product 
development; the detailed interviews 
covered level-of-effort support to mission 
systems engineering, product development, 
operations support, and sustaining 
engineering. In general as shown in Fig. 3, 
the actual labor costs were found to provide 
a lower limit on the resources required for a 
mission; the detailed interviews provided 
an upper limit.  

From another perspective, performance analysis tools can be used to provide data on the peak and average 
loading on hardware and software systems. The resource utilization for a given customer, for example an ISS 
payload, was easily obtained using these tools. Ideally, it would be desirable to be able to analyze this data by user 
and user role, to assist in extrapolating the resource loading to larger and smaller, or more or less complex missions. 
In reality, breaking the data down to the individual user level in order to extrapolate to missions or payloads of 
different size or complexity was more difficult and time consuming. Instead the data needed to be looked at for 
“classes” of missions or payloads with similar characteristics. In addition, performance tools only provide data on 
performance for the system of today; they provide no hard data on the performance of the system of tomorrow. This 
must be extrapolated based on expected improvements in technology and, just as critically, changes in user 
operations concepts and expectations.  

 The final model relied heavily on the expertise of the customer service team (CST), which supports a HOSC 
customer from day one through mission closeout, to understand the data and make the appropriate comparisons 
between the available cost data and the mission type, size, support requirements, and complexity.  

 
Figure 3. Staffing Level Analysis. Sample plot showing the actual 
(aqua through light green lines) staffing support for a given 
engineering position versus the calculated support for that position
based on detailed interviews (blue line). Expected staffing is bounded 
by the actual and estimated values. 
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B. Benefits and Risks of Modeling in a “Cloud-like” Environment 
“Cloud” is the word of the moment. Ideally, the most efficient use of resources (both hardware and labor) can be 

made when resources are shared in a virtual environment. Rather than requiring each mission to purchase dedicated 
hardware, hardware that typically must be redundant to meet reliability and availability requirements, sharing 
hardware reduces the cost commitment of each mission, particularly smaller missions, without increasing the risk to 
mission performance. A virtual hardware environment also mitigates the risks associated with inaccurate estimates 
of the resources required for each customer, or variations in the resource requirements over the life of the mission. 
Slight over-estimates of the resources required for a more complex mission can be offset by slight under-estimates 
of resources required for simpler missions. Likewise, virtual sharing of resources means that any individual mission 
does not have to scope resources for peak loading. Instead, resources can be appropriately allocated based on 
mission phase and critical activities. Of course, this is limited by and must allow for overlapping peak support when 
critical activities align for multiple missions.  

However, commercial cloud providers have an advantage in that they can amortize the cost of maintenance and 
refresh on an annual or monthly basis over all customers and bank the money until it is required. The money is then 
spent on shared equipment used by all customers. Government installations do not have this advantage. Funding is 
typically level and cannot be held until needed. Funds must be spent within a specific timeframe, typically within a 
year or two of allocation. Funding is provided for each customer, and must be allocated and spent in support of that 
customer.  

The discrete nature of hardware adds additional complexity to the problem. Server or network capacity can be 
increased when support for a new mission will exceed capacity. But the cost may not be proportional to the mission 
size. For example, as illustrated in Fig. 4, currently funded missions may be using most or all of the existing system 
capacity; a small mission may only require 
a small percent of the overall capacity, but 
this is sufficient to require the purchase of 
new equipment. The cost of this new 
hardware cannot be shared with the current 
mission, which is working to existing, 
approved funding levels. However, by the 
very nature of its low cost profile, the small 
mission cannot afford to purchase an 
appropriate cloud-like increment in 
capacity. In this case, purchasing dedicated 
equipment for the smaller mission may be 
the most cost effective approach, even if it 
means the mission cannot take advantage of 
the economies of scale. 

There is no clean solution to this dilemma. The HOSC cost model takes a hybrid approach that can take 
advantage of shared resources when mission concept, capacity, and cost permit, but can also fall back to the 
traditional case of dedicated, low-cost hardware if necessary. 

C. Cost Model Validation and Extrapolation 
The HOSC has supported and continues to support a variety of missions. Ideally, validating the model across the 

potential range of missions would involve comparing estimated resources and associated costs against truth models 
for each type of mission. In actuality, detailed actual labor costs and hardware resource usage are only available for 
the more recent customers and missions. In addition, the hardware resource metrics are geared toward ensuring 
service levels and availability requirements are met in a multi-mission environment, as well as early identification of 
potential issues, rather than toward the more difficult mapping of resource usage to individual missions, users, or 
user roles. The second choice would be validating the estimates against actual data collected for new missions, and 
updating the model in an Agile-like approach. In practice, the long development cycle for most NASA missions 
makes this approach difficult. Add to this the decrease in the number of funded NASA missions, and this approach 
becomes impractical.  

However, in the tight NASA budget environment, estimated costs need to represent a realistic, not-to-exceed 
limit on the cost of designing, testing, and executing mission operations. As in other areas, we have taken a hybrid 
approach to validation. We have modeled current or completed missions with the accuracy of the available data. 
New estimates, and the mission assumptions that underlie the estimate, are subject to review by cognizant engineers 
to ensure consistency with past experience as well as ongoing or expected architecture and service enhancements.  

 
Figure 4. Hardware Resource Example. Resource requirement for
a small mission may exceed existing capacity, but increasing the 
resource incrementally may exceed the small missions budget for 
operations support. 
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More importantly, we are in the process of reviewing and revising the measurements collected and the metrics 
used to analyze operations performance and capability. The metrics need to clearly map resource use (labor and 
hardware): 

1) Mission characteristics 
2) Mission phase 
3) Critical activities 
4) Users and user roles 

Since its completion, the model has been used to cost operations support for missions that include a lunar surface 
operations, low earth orbit operations for cube satellites, deep space operations for asteroid rendezvous, and a 
backup control center for an in-flight mission. To date, those estimates have demonstrated a high-level of agreement 
with independent estimates by the system engineers and engineering management. 

III. Conclusion  
The variety of missions supported by the HOSC continues to evolve. The tight NASA budget requires accurate, 

realistic operations cost estimates covering the life of the mission, while the realities of competition for missions 
requires a rapid, low-cost response. The HOSC cost model meets these needs. However, developing the model has 
identified a number of lessons learned that can be applied to developing multi-mission cost models, or cost models 
in general. Note that while this paper specifically addresses cost analysis in a multi-mission environment, these 
lessons apply equally to extrapolating costs for a new mission based on operation of an existing mission, in a single-
mission environment. 

First, the customer of tomorrow is not necessarily the customer of today. When setting up metrics for an 
operational system, the use of those metrics needs to be considered. The simplest measurements derived from 
performance analysis tools may be adequate for monitoring performance against customer requirements, but not 
provide adequate granularity in a multi-mission environment to allow the data to be extrapolated to other missions. 
Additional measurements, or the ability to correlate the measurements to other characteristics, will be needed to 
truly characterize the resource requirements across a spectrum of mission types. 

Second, multiple approaches and the ability to synthesize data across those approaches (for example, interviews 
and data modeling), are necessary to extrapolate from a limited set of data points (individual missions with specific 
characteristics) to a broad spectrum of mission types.  

Third, changes in technology and operational use of the system need to be considered and incorporated in the 
model parameters or design. 

Fourth and foremost, the involvement of an experienced and knowledgeable engineering team is critical to 
understanding the data and its applicability in an evolving service environment. Cost analysis needs to be tempered 
by the detailed understanding of user needs, engineering reality, and the ongoing evolution to the operations center 
of tomorrow. 
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