122 research outputs found

    Modelling of geomagnetic induction in pipelines

    No full text
    International audienceGeomagnetic field variations induce telluric currents in pipelines, which modify the electrochemical conditions at the pipe/soil interface, possibly contributing to corrosion of the pipeline steel. Modelling of geomagnetic induction in pipelines can be accomplished by combining several techniques. Starting with geomagnetic field data, the geoelectric fields in the absence of the pipeline were calculated using the surface impedance derived from a layered-Earth conductivity model. The influence of the pipeline on the electric fields was then examined using an infinitely long cylinder (ILC) model. Pipe-to-soil potentials produced by the electric field induced in the pipeline were calculated using a distributed source transmission line (DSTL) model. The geomagnetic induction process is frequency dependent; therefore, the calculations are best performed in the frequency domain, using a Fourier transform to go from the original time domain magnetic data, and an inverse Fourier transform at the end of the process, to obtain the pipe-to-soil potential variation in the time domain. Examples of the model calculations are presented and compared to observations made on a long pipeline in the auroral zone

    Earth conductivity structures and their effects on geomagnetic induction in pipelines

    Get PDF
    Anomalous, large pipe-to-soil potentials (PSP) have been observed along a natural gas pipeline in eastern Ontario, Canada, where there is a major geological contact between the highly resistive rocks of the Precambrian Shield to the west and the more conductive Paleozoic sediments to the east. This study tested the hypothesis that large variations of PSP are related to lateral changes of Earth conductivity under the pipeline. Concurrent and co-located PSP and magnetotelluric (MT) geophysical data were acquired in the study area. Results from the MT survey were used to model PSP variations based on distributed-source transmission line theory, using a spatially-variant surface geoelectric field. Different models were built to investigate the impact of different subsurface features. Good agreement between modelled and observed PSP was reached when impedance peaks related to major changes of subsurface geological conditions were included. The large PSP could therefore be attributed to the presence of resistive intrusive bodies in the upper crust and/or boundaries between tectonic terranes. This study demonstrated that combined PSP-MT investigations are a useful tool in the identification of potential hazards caused by geomagnetically induced currents in pipelines

    Developments in an HF Nowcasting Model for Trans-Polar Airline Routes

    Get PDF
    HF communications can be difficult in the polar regions since they are strongly influenced by space weather events. Airline communications within the polar regions rely on HF communications and improved nowcasting and forecasting techniques in support of this are now required. Previous work has demonstrated that ray tracing through a realistic, historical ionosphere provides signal coverage in good agreement with measurements. This paper presents an approach to providing a real-time ionospheric model by assimilating TEC measurements and validates it against observations from ionosondes

    Developments in HF Propagation Predictions to Support Communications with Aircraft on Trans-polar Routes

    Get PDF
    Commercial airlines began operations over polar routes in 1999 with a small number of proving flights. By 2014 the number had increased to in excess of 12,000 flights per year, and further increases are expected. For safe operations, the aircraft have to be able to communicate with air traffic control centres at all times. This is achieved by VHF links whilst within range of the widespread network of ground stations, and by HF radio in remote areas such as the Polar regions, the North Atlantic and Pacific where VHF ground infrastructure does not exist. Furthermore, the Russian side of the pole only has HF capability. This has created a demand for improved HF nowcasting and forecasting procedures to support the polar operations, which are the subject of this paper

    Progress towards a propagation prediction service for HF communications with aircraft on trans-polar routes

    Get PDF
    Commercial airlines began operations over polar routes in 1999 with a small number of proving flights. By 2014 the number had increased to in excess of 12,000 flights per year, and further increases are expected. For safe operations, the aircraft have to be able to communicate with air traffic control centres at all times. This is achieved by VHF links whilst within range of the widespread network of ground stations, and is by HF radio in remote areas such as the Polar regions, the North Atlantic and Pacific where VHF ground infrastructure does not exist. Furthermore, the Russian side of the pole only has HF capability. Researchers at the University of Leicester and at Lancaster University have developed various models (outlined below) that can be employed in HF radio propagation predictions. It is anticipated that these models will form the basis of an HF forecasting and nowcasting service for the airline industry. Propagation coverage predictions make use of numerical ray tracing to estimate the ray paths through a model ionosphere. Initially, a background ionospheric model is produced, which is then perturbed to include the various ionospheric features prevalent at high latitudes (in particular patches, arcs, auroral zone irregularities and the mid-latitude trough) that significantly affect the propagation of the radio signals. The approach that we are currently adopting is to start with the IRI and to perturb this based on measurements made near to the time and area of interest to form the basis of the background ionospheric model. This is then further perturbed to include features such as the convecting patches, the parameters of which may also be informed by measurements. A significant problem is the high variability of the high latitude ionosphere, and the relative scarcity of real-time measurements over the region. Real time measurements that we will use as the basis for perturbing the IRI include ionosonde soundings from, e.g. the GIRO database, and TEC measurements from the IGS network. Real-time modelling of HF radiowave absorption in the D-region ionosphere is also included. The geostationary GOES satellites provide real-time information on X-ray flux (causing shortwave fadeout during solar flares) and the flux of precipitating energetic protons which correlates strongly with Polar Cap Absorption (PCA). Real-time solar wind and interplanetary magnetic field measurements from the ACE or DSCOVR spacecraft provide geomagnetic index estimates used to model the location of both auroral absorption (on a probabilistic basis) and the proton rigidity cutoff boundary that defines the latitudinal extent of PCA during solar proton events (SPE). Empirical climatological models have been uniquely adapted to assimilate recent measurements of cosmic noise absorption (at 30 MHz) from a large array of riometers in Canada and Scandinavia. The model parameters are continuously optimised and updated to account for regional and temporal variations in ionospheric composition (and hence HF absorption rate (dB/km)) that can change significantly during the course of an SPE, for example. Real-time optimisation during SPE can also improve estimates of the proton rigidity cutoff and improve the modelled ionospheric response function absorption vs. zenith angle) at twilight

    MODELLING SOLAR MAGNETIC FLUX AND IRRADIANCE DURING AND SINCE THE MAUNDER MINIMUM

    Get PDF
    Abstract. Using sunspot number as input, we construct a model for the evolution of magnetic flux from strong elements in active regions to weak remnants during the solar cycle and thence estimate the historical record of irradiance from the Maunder Minimum to the present. The magnetic flux model is a fragmentation cascade starting with strong-field elements, which fragment into weak-field elements and then into a background field. The model indicates the mean total irradiance during the Maunder Minimum was between 1 and 1.5 Wm −2 lower than it is at present
    corecore