266 research outputs found

    Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis.

    Get PDF
    Oligodendrocytes associate with axons to establish myelin and provide metabolic support to neurons. In the spinal cord of amyotrophic lateral sclerosis (ALS) mice, oligodendrocytes downregulate transporters that transfer glycolytic substrates to neurons and oligodendrocyte progenitors (NG2(+) cells) exhibit enhanced proliferation and differentiation, although the cause of these changes in oligodendroglia is unknown. We found extensive degeneration of gray matter oligodendrocytes in the spinal cord of SOD1 (G93A) ALS mice prior to disease onset. Although new oligodendrocytes were formed, they failed to mature, resulting in progressive demyelination. Oligodendrocyte dysfunction was also prevalent in human ALS, as gray matter demyelination and reactive changes in NG2(+) cells were observed in motor cortex and spinal cord of ALS patients. Selective removal of mutant SOD1 from oligodendroglia substantially delayed disease onset and prolonged survival in ALS mice, suggesting that ALS-linked genes enhance the vulnerability of motor neurons and accelerate disease by directly impairing the function of oligodendrocytes

    Experimental investigation of non-uniform heating effect on flow boiling instabilities in a microchannel-based heat sink

    Get PDF
    Copyright @ 2011 ElsevierTwo-phase flow boiling in microchannels is one of the most promising cooling technologies for coping with high heat fluxes produced by the next generation of central processor units (CPUs). If flow boiling is to be used as a thermal management method for high heat flux electronics it is necessary to understand the behaviour of a non-uniform heat distribution, which is typically the case observed in a real operating CPU. The work presented is an experimental study of two-phase boiling in a multi-channel silicon heat sink with non-uniform heating, using water as the cooling liquid. Thin nickel film sensors, integrated on the back side of the heat sinks were used in order to gain insight related to temperature fluctuations caused by two-phase flow instabilities under non-uniform heating. The effect of various hotspot locations on the temperature profile and pressure drop has been investigated. It was observed that boiling inside microchannels with axially non-uniform heating leads to high temperature non-uniformity in the transverse direction.This research was supported by the UK Engineering and Physical Sciences Research Council through grant EP/D500109/1

    Stage-specific control of oligodendrocyte survival and morphogenesis by TDP-43

    Get PDF
    Generation of oligodendrocytes in the adult brain enables both adaptive changes in neural circuits and regeneration of myelin sheaths destroyed by injury, disease, and normal aging. This transformation of oligodendrocyte precursor cells (OPCs) into myelinating oligodendrocytes requires processing of distinct mRNAs at different stages of cell maturation. Although mislocal- ization and aggregation of the RNA-binding protein, TDP-43, occur in both neurons and glia in neurodegenerative diseases, the consequences of TDP-43 loss within different stages of the oligo- dendrocyte lineage are not well understood. By performing stage-specific genetic inactivation of Tardbp in vivo, we show that oligodendrocyte lineage cells are differentially sensitive to loss of TDP- 43. While OPCs depend on TDP-43 for survival, with conditional deletion resulting in cascading cell loss followed by rapid regeneration to restore their density, oligodendrocytes become less sensitive to TDP-43 depletion as they mature. Deletion of TDP-43 early in the maturation process led to even- tual oligodendrocyte degeneration, seizures, and premature lethality, while oligodendrocytes that experienced late deletion survived and mice exhibited a normal lifespan. At both stages, TDP-43- deficient oligodendrocytes formed fewer and thinner myelin sheaths and extended new processes that inappropriately wrapped neuronal somata and blood vessels. Transcriptional analysis revealed that in the absence of TDP-43, key proteins involved in oligodendrocyte maturation and myelination were misspliced, leading to aberrant incorporation of cryptic exons. Inducible deletion of TDP-43 from oligodendrocytes in the adult central nervous system (CNS) induced the same progressive morphological changes and mice acquired profound hindlimb weakness, suggesting that loss of TDP-43 function in oligodendrocytes may contribute to neuronal dysfunction in neurodegenerative disease

    Determining the neurotransmitter concentration profile at active synapses

    Get PDF
    Establishing the temporal and concentration profiles of neurotransmitters during synaptic release is an essential step towards understanding the basic properties of inter-neuronal communication in the central nervous system. A variety of ingenious attempts has been made to gain insights into this process, but the general inaccessibility of central synapses, intrinsic limitations of the techniques used, and natural variety of different synaptic environments have hindered a comprehensive description of this fundamental phenomenon. Here, we describe a number of experimental and theoretical findings that has been instrumental for advancing our knowledge of various features of neurotransmitter release, as well as newly developed tools that could overcome some limits of traditional pharmacological approaches and bring new impetus to the description of the complex mechanisms of synaptic transmission

    Specificity and Actions of an Arylaspartate Inhibitor of Glutamate Transport at the Schaffer Collateral-CA1 Pyramidal Cell Synapse

    Get PDF
    In this study we characterized the pharmacological selectivity and physiological actions of a new arylaspartate glutamate transporter blocker, L-threo-ß-benzylaspartate (L-TBA). At concentrations up to 100 Β΅M, L-TBA did not act as an AMPA receptor (AMPAR) or NMDA receptor (NMDAR) agonist or antagonist when applied to outside-out patches from mouse hippocampal CA1 pyramidal neurons. L-TBA had no effect on the amplitude of field excitatory postsynaptic potentials (fEPSPs) recorded at the Schaffer collateral-CA1 pyramidal cell synapse. Excitatory postsynaptic currents (EPSCs) in CA1 pyramidal neurons were unaffected by L-TBA in the presence of physiological extracellular Mg2+ concentrations, but in Mg2+-free solution, EPSCs were significantly prolonged as a consequence of increased NMDAR activity. Although L-TBA exhibited approximately four-fold selectivity for neuronal EAAT3 over glial EAAT1/EAAT2 transporter subtypes expressed in Xenopus oocytes, the L-TBA concentration-dependence of the EPSC charge transfer increase in the absence of Mg2+ was the same in hippocampal slices from EAAT3 +/+ and EAAT3 βˆ’/βˆ’ mice, suggesting that TBA effects were primarily due to block of glial transporters. Consistent with this, L-TBA blocked synaptically evoked transporter currents in CA1 astrocytes with a potency in accord with its block of heterologously expressed glial transporters. Extracellular recording in the presence of physiological Mg2+ revealed that L-TBA prolonged fEPSPs in a frequency-dependent manner by selectively increasing the NMDAR-mediated component of the fEPSP during short bursts of activity. The data indicate that glial glutamate transporters play a dominant role in limiting extrasynaptic transmitter diffusion and binding to NMDARs. Furthermore, NMDAR signaling is primarily limited by voltage-dependent Mg2+ block during low-frequency activity, while the relative contribution of transport increases during short bursts of higher frequency signaling

    Quantal Glutamate Release Is Essential for Reliable Neuronal Encodings in Cerebral Networks

    Get PDF
    Background: The neurons and synapses work coordinately to program the brain codes of controlling cognition and behaviors. Spike patterns at the presynaptic neurons regulate synaptic transmission. The quantitative regulations of synapse dynamics in spike encoding at the postsynaptic neurons remain unclear. Methodology/Principal Findings: With dual whole-cell recordings at synapse-paired cells in mouse cortical slices, we have investigated the regulation of synapse dynamics to neuronal spike encoding at cerebral circuits assembled by pyramidal neurons and GABAergic ones. Our studies at unitary synapses show that postsynaptic responses are constant over time, such as glutamate receptor-channel currents at GABAergic neurons and glutamate transport currents at astrocytes, indicating quantal glutamate release. In terms of its physiological impact, our results demonstrate that the signals integrated from quantal glutamatergic synapses drive spike encoding at GABAergic neurons reliably, which in turn precisely set spike encoding at pyramidal neurons through feedback inhibition. Conclusion/Significance: Our studies provide the evidences for the quantal glutamate release to drive the spike encodings precisely in cortical circuits, which may be essential for programming the reliable codes in the brain to manage wellorganize

    b-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression

    Get PDF
    Glutamate is the principal excitatory neurotransmitter in the nervous system. Inactivation of synaptic glutamate is handled by the glutamate transporter GLT1 (also known as EAAT2; refs 1, 2), the physiologically dominant astroglial protein. In spite of its critical importance in normal and abnormal synaptic activity, no practical pharmaceutical can positively modulate this protein. Animal studies show that the protein is important for normal excitatory synaptic transmission, while its dysfunction is implicated in acute and chronic neurological disorders, including amyotrophic lateral sclerosis (ALS) 3 , stroke 4 , brain tumours 5 and epilepsy To identify compounds capable of increasing rodent GLT1 expression, a structurally diverse library of 1,040 FDA-approved drugs and nutritionals were individually added to organotypic spinal cord slice cultures prepared from postnatal day 9 rats To better understand the mechanism of action, the effect of the drugs on the GLT1 promoter was examined in cell lines fro

    Synapse Geometry and Receptor Dynamics Modulate Synaptic Strength

    Get PDF
    Synaptic transmission relies on several processes, such as the location of a released vesicle, the number and type of receptors, trafficking between the postsynaptic density (PSD) and extrasynaptic compartment, as well as the synapse organization. To study the impact of these parameters on excitatory synaptic transmission, we present a computational model for the fast AMPA-receptor mediated synaptic current. We show that in addition to the vesicular release probability, due to variations in their release locations and the AMPAR distribution, the postsynaptic current amplitude has a large variance, making a synapse an intrinsic unreliable device. We use our model to examine our experimental data recorded from CA1 mice hippocampal slices to study the differences between mEPSC and evoked EPSC variance. The synaptic current but not the coefficient of variation is maximal when the active zone where vesicles are released is apposed to the PSD. Moreover, we find that for certain type of synapses, receptor trafficking can affect the magnitude of synaptic depression. Finally, we demonstrate that perisynaptic microdomains located outside the PSD impacts synaptic transmission by regulating the number of desensitized receptors and their trafficking to the PSD. We conclude that geometrical modifications, reorganization of the PSD or perisynaptic microdomains modulate synaptic strength, as the mechanisms underlying long-term plasticity
    • …
    corecore