217 research outputs found

    RIS-enabled smart wireless environments: deployment scenarios, network architecture, bandwidth and area of influence

    Get PDF
    Reconfigurable intelligent surfaces (RISs) constitute the key enabler for programmable electromagnetic propagation environments and are lately being considered as a candidate physical-layer technology for the demanding connectivity, reliability, localisation, and sustainability requirements of next-generation wireless networks. In this paper, we first present the deployment scenarios for RIS-enabled smart wireless environments that have been recently designed within the ongoing European Union Horizon 2020 RISE-6G project, as well as a network architecture integrating RISs with existing standardised interfaces. We identify various RIS deployment strategies and sketch the core architectural requirements in terms of RIS control and signalling, depending on the RIS hardware architectures and respective capabilities. Furthermore, we introduce and discuss, with the aid of simulations and reflect array measurements, two novel metrics that emerge in the context of RIS-empowered wireless systems: the RIS bandwidth of influence and the RIS area of influence. Their extensive investigation corroborates the need for careful deployment and planning of the RIS technology in future wireless networks

    Limits on the production of scalar leptoquarks from Z (0) decays at LEP

    Get PDF
    A search has been made for pairs and for single production of scalar leptoquarks of the first and second generations using a data sample of 392000 Z0 decays from the DELPHI detector at LEP 1. No signal was found and limits on the leptoquark mass, production cross section and branching ratio were set. A mass limit at 95% confidence level of 45.5 GeV/c2 was obtained for leptoquark pair production. The search for the production of a single leptoquark probed the mass region above this limit and its results exclude first and second generation leptoquarks D0 with masses below 65 GeV/c2 and 73 GeV/c2 respectively, at 95% confidence level, assuming that the D0lq Yukawa coupling alpha(lambda) is equal to the electromagnetic one. An upper limit is also given on the coupling alpha(lambda) as a function of the leptoquark mass m(D0)

    Alterations in the Gut Microbiome Composition of People Living with HIV in the Asia–Pacific Region: A Systematic Review

    No full text
    Human immunodeficiency virus (HIV) infection continues to present a global health issue. Recent studies have explored the potential role of the gut microbiome in HIV infection for novel therapeutic approaches. We investigated the gut microbiome composition of people living with HIV (PLHIV) in the Asia–Pacific region. This review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. An electronic search was conducted in the PubMed/MEDLINE, Scopus, and ScienceDirect databases using keywords such as “HIV”, “PLHIV”, “AIDS”, “gut microbiome”, “gut dysbiosis”, and “metagenomics”. Only peer-reviewed and full-text studies published in English were included. A total of 15 studies from the Asia–Pacific region were included for analysis. Compared to healthy controls, PLHIV showed an increased abundance of Proteobacteria and its genera, which may be considered pathobionts, and decreased abundances of Bacteroidetes and several genera under Firmicutes with known short-chain fatty acid and immunoregulatory activities. Predominant taxa such as Ruminococcaceae and Prevotellaceae were also associated with clinical factors such as CD4 count, the CD4/CD8 ratio, and inflammatory cytokines. This review highlights gut microbiome changes among PLHIV in the Asia–Pacific region, indicating potential bacterial signatures for prognostication. The partial restoration of the microbiome toward beneficial taxa may ensure the long-term success of treatment, promoting immune recovery while maintaining viral load suppression

    Smart Wireless Environments Enabled by RISs: Deployment Scenarios and Two Key Challenges

    No full text
    Reconfigurable Intelligent Surfaces (RISs) constitute the enabler for programmable propagation of electromagnetic signals, and are lately being considered as a candidate physicallayer technology for the demanding connectivity, reliability, localization, and sustainability requirements of next generation wireless communications networks. In this paper, we present various deployment scenarios for RIS-enabled smart wireless environments that have been recently designed by the ongoing EU H2020 RISE-6G project. The scenarios are taxonomized according to performance objectives, in particular, connectivity and reliability, localization and sensing, as well as sustainability and secrecy. We identify various deployment strategies and sketch the core architectural requirements in terms of RIS control and signaling, depending on the RIS hardware architectures and their respective capabilities. Furthermore, we introduce and discuss, via preliminary simulation results and reflectarray measurements, two key novel challenges with RIS-enabled smart wireless environments, namely, the area of influence and the bandwidth of influence of RISs, which corroborate the need for careful deployment and planning of this new technology

    RIS-enabled smart wireless environments: deployment scenarios, network architecture, bandwidth and area of influence

    Get PDF
    International audienceReconfigurable intelligent surfaces (RISs) constitute the key enabler for programmable electromagnetic propagation environments and are lately being considered as a candidate physical-layer technology for the demanding connectivity, reliability, localisation, and sustainability requirements of next-generation wireless networks. In this paper, we first present the deployment scenarios for RIS-enabled smart wireless environments that have been recently designed within the ongoing European Union Horizon 2020 RISE-6G project, as well as a network architecture integrating RISs with existing standardised interfaces. We identify various RIS deployment strategies and sketch the core architectural requirements in terms of RIS control and signalling, depending on the RIS hardware architectures and respective capabilities. Furthermore, we introduce and discuss, with the aid of simulations and reflect array measurements, two novel metrics that emerge in the context of RIS-empowered wireless systems: the RIS bandwidth of influence and the RIS area of influence. Their extensive investigation corroborates the need for careful deployment and planning of the RIS technology in future wireless networks
    corecore