170 research outputs found
Four-wave mixing in a silicon microring resonator using a self-pumping geometry
We report on four-wave mixing in a silicon microring resonator using a
self-pumping scheme instead of an external laser. The ring resonator is
inserted in an external-loop cavity with a fibered semiconductor amplifier as a
source of gain. The silicon microring acts as a filter and we observe lasing in
one of the microring's resonances. We study correlations between signal and
idler generated beams using a Joint Spectral Density experiment
Exciton polaritons in two-dimensional photonic crystals
Experimental evidence of strong coupling between excitons confined in a
quantum well and the photonic modes of a two-dimensional dielectric lattice is
reported. Both resonant scattering and photoluminescence spectra at low
temperature show the anticrossing of the polariton branches, fingerprint of
strong coupling regime. The experiments are successfully interpreted in terms
of a quantum theory of exciton-photon coupling in the investigated structure.
These results show that the polariton dispersion can be tailored by properly
varying the photonic crystal lattice parameter, which opens the possibility to
obtain the generation of entangled photon pairs through polariton stimulated
scattering.Comment: 5 pages, 4 figure
Highly Tunable Emission by Halide Engineering in Lead-Free Perovskite-Derivative Nanocrystals: The Cs2SnX6 (X = Cl, Br, Br/I, I) System
Nanocrystals of Cs2SnX6 (X = Cl, Br, Br0.5I0.5, and I) have been prepared by a simple, optimized, hot-injection method, reporting for the first time the synthesis of Cs2SnCl6, Cs2SnBr6, and mixed Cs2Sn(I0.5Br0.5)6 nanocrystalline samples. They all show a cubic crystal structure with a linear scaling of lattice parameter by changing the halide size. The prepared nanocrystals have spherical shape with average size from 3 to 6 nm depending on the nature of the halide and span an emission range from 444 nm (Cs2SnCl6) to 790 nm (Cs2SnI6) with a further modulation provided by mixed Br/I systems
Polariton Condensation and Lasing
The similarities and differences between polariton condensation in
microcavities and standard lasing in a semiconductor cavity structure are
reviewed. The recent experiments on "photon condensation" are also reviewed.Comment: 23 pages, 6 figures; Based on the book chapter in Exciton Polaritons
in Microcavities, (Springer Series in Solid State Sciences vol. 172), V.
Timofeev and D. Sanvitto, eds., (Springer, 2012
Integrated sources of photon quantum states based on nonlinear optics
The ability to generate complex optical photon states involving entanglement between multiple optical modes is not only critical to advancing our understanding of quantum mechanics but will play a key role in generating many applications in quantum technologies. These include quantum communications, computation, imaging, microscopy and many other novel technologies that are constantly being proposed. However, approaches to generating parallel multiple, customisable bi- and multi-entangled quantum bits (qubits) on a chip are still in the early stages of development. Here, we review recent advances in the realisation of integrated sources of photonic quantum states, focusing on approaches based on nonlinear optics that are compatible with contemporary optical fibre telecommunications and quantum memory platforms as well as with chip-scale semiconductor technology. These new and exciting platforms hold the promise of compact, low-cost, scalable and practical implementations of sources for the generation and manipulation of complex quantum optical states on a chip, which will play a major role in bringing quantum technologies out of the laboratory and into the real world
Quantum-fluid dynamics of microcavity polaritons
Semiconductor microcavities offer a unique system to investigate the physics
of weakly interacting bosons. Their elementary excitations, polaritons--a
mixture of excitons and photons--behave, in the low density limit, as bosons
that can undergo a phase transition to a regime characterised by long range
coherence. Condensates of polaritons have been advocated as candidates for
superfluidity; and the formation of vortices as well as elementary excitations
with a linear dispersion are actively sought after. In this work, we have
created and set in motion a macroscopically degenerate state of polaritons and
let it collide with a variety of defects present in the sample. Our experiments
show striking manifestations of a coherent light-matter packet that displays
features of a superfluid, although one of a highly unusual character as it
involves an out-of-equilibrium dissipative system where it travels at
ultra-fast velocity of the order of 1% the speed of light. Our main results are
the observation of i) a linear polariton dispersion accompanied with
diffusion-less motion, ii) flow without resistance when crossing an obstacle,
iii) suppression of Rayleigh scattering and iv) splitting into two fluids when
the size of the obstacle is comparable with the size of the wavepacket. This
work opens the way to the investigation of new phenomenology of
out-of-equilibrium condensates.Comment: 22 pages, 5 figure
Suppression of Parasitic Nonlinear Processes in Spontaneous Four-Wave Mixing with Linearly Uncoupled Resonators
We report on a signal-to-noise ratio characterizing the generation of identical photon pairs of more than 4 orders of magnitude in a ring resonator system. Parasitic noise, associated with single-pump spontaneous four-wave mixing, is essentially eliminated by employing a novel system design involving two resonators that are linearly uncoupled but nonlinearly coupled. This opens the way to a new class of integrated devices exploiting the unique properties of identical photon pairs in the same optical mode
Symmetry-breaking Effects for Polariton Condensates in Double-Well Potentials
We study the existence, stability, and dynamics of symmetric and anti-symmetric states of quasi-one-dimensional polariton condensates in double-well potentials, in the presence of nonresonant pumping and nonlinear damping. Some prototypical features of the system, such as the bifurcation of asymmetric solutions, are similar to the Hamiltonian analog of the double-well system considered in the realm of atomic condensates. Nevertheless, there are also some nontrivial differences including, e.g., the unstable nature of both the parent and the daughter branch emerging in the relevant pitchfork bifurcation for slightly larger values of atom numbers. Another interesting feature that does not appear in the atomic condensate case is that the bifurcation for attractive interactions is slightly sub-critical instead of supercritical. These conclusions of the bifurcation analysis are corroborated by direct numerical simulations examining the dynamics of the system in the unstable regime.MICINN (Spain) project FIS2008- 0484
Bistability in the Tunnelling Current through a Ring of Coupled Quantum Dots
We study bistability in the electron transport through a ring of N coupled
quantum dots with two orbitals in each dot. One orbital is localized (called b
orbital) and coupling of the b orbitals in any two dots is negligible; the
other is delocalized in the plane of the ring (called d orbital), due to
coupling of the d orbitals in the neighboring dots, as described by a
tight-binding model. The d orbitals thereby form a band with finite width. The
b and d orbitals are connected to the source and drain electrodes with a
voltage bias V, allowing the electron tunnelling. Tunnelling current is
calculated by using a nonequilibrium Green function method recently developed
to treat nanostructures with multiple energy levels. We find a bistable effect
in the tunnelling current as a function of bias V, when the size N>50; this
effect scales with the size N and becomes sizable at N~100. The temperature
effect on bistability is also discussed. In comparison, mean-field treatment
tends to overestimate the bistable effect.Comment: Published in JPSJ; minor typos correcte
Transmittance and optical constants of ca films in the 4-1000 eV spectral range
8 págs.; 8 figs.; OCIS codes: (260.7200) Ultraviolet, extreme; (120.4530) Optical constants; (350.2450) Filters, absorption; (230.4170) Multilayers; (310.6860) Thin films, optical properties.© 2015 Optical Society of America. The low expected absorption of Ca in the extreme ultraviolet (EUV) makes it an attractive material for multilayers and filters because most materials in nature strongly absorb the EUV. Few optical constant data had been reported for Ca. In this research, Ca films of various thicknesses were deposited on gridsupported C films and their transmittance measured in situ from the visible to the soft x-rays. The measurement range contains M2,3 and L2,3 absorption edges. Transmittance measurements were used to obtain the Ca extinction coefficient k. A minimum k of 0.017 was obtained at ∼23 eV, which makes Ca a promising low-absorption material for EUV coatings. A second spectral range of interest for its low absorption is below the Ca L3 edge at ∼343 eV. Measured k data and extrapolations were used to calculate the refractive index n using Kramers.Kronig relations. This is the first self-consistent data set on Ca covering a wide spectral range including the EUV.We acknowledge support by the European
Community—Research Infrastructure Action under
the FP6 “Structuring the European Research Area”
Programme (through the Integrated Infrastructure
Initiative “Integrating Activity on Synchrotron and
Free Electron Laser Science”) through proposal
number Ref. 2007655. This work was also supported
by the National Programme for Space Research,
Subdirección General de Proyectos de Investigación,
Ministerio de Ciencia y Tecnología, project numbers
AYA2010-22032 and AYA2013-42590-P. L. Rodrí-
guez-de Marcos and S. García-Cortés are thankful
to Consejo Superior de Investigaciones Científicas
(CSIC) for funding under the Programa JAE,
partially supported by the European Social Fund.
M. Vidal-Dasilva acknowledges financial support
from an FPI fellowship number BES-2006-14047Peer Reviewe
- …