688 research outputs found

    A dynamics-driven approach to precision machines design for micro-manufacturing and its implementation perspectives

    Get PDF
    Precision machines are essential elements in fabricating high quality micro products or micro features and directly affect the machining accuracy, repeatability and efficiency. There are a number of literatures on the design of industrial machine elements and a couple of precision machines commercially available. However, few researchers have systematically addressed the design of precision machines from the dynamics point of view. In this paper, the design issues of precision machines are presented with particular emphasis on the dynamics aspects as the major factors affecting the performance of the precision machines and machining processes. This paper begins with a brief review of the design principles of precision machines with emphasis on machining dynamics. Then design processes of precision machines are discussed, and followed by a practical modelling and simulation approaches. Two case studies are provided including the design and analysis of a fast tool servo system and a 5-axis bench-top micro-milling machine respectively. The design and analysis used in the two case studies are formulated based on the design methodology and guidelines

    Light response of pure CsI calorimeter crystals painted with wavelength-shifting lacquer

    Get PDF
    We have measured scintillation properties of pure CsI crystals used in the shower calorimeter built for a precise determination of the pi+ -> pi0 e+ nu decay rate at the Paul Scherrer Institute (PSI). All 240 individual crystals painted with a special wavelength-shifting solution were examined in a custom-build detection apparatus (RASTA=radioactive source tomography apparatus) that uses a 137Cs radioactive gamma source, cosmic muons and a light emitting diode as complementary probes of the scintillator light response. We have extracted the total light output, axial light collection nonuniformities and timing responses of the individual CsI crystals. These results predict improved performance of the 3 pi sr PIBETA calorimeter due to the painted lateral surfaces of 240 CsI crystals. The wavelength-shifting paint treatment did not affect appreciably the total light output and timing resolution of our crystal sample. The predicted energy resolution for positrons and photons in the energy range of 10-100 MeV was nevertheless improved due to the more favorable axial light collection probability variation. We have compared simulated calorimeter ADC spectra due to 70 MeV positrons and photons with a Monte Carlo calculation of an ideal detector light response.Comment: Elsevier LaTeX, 35 pages in e-print format, 15 Postscript Figures and 4 Tables, also available at http://pibeta.phys.virginia.edu/~pibeta/subprojects/csipro/tomo/rasta.p

    Recent Decisions

    Get PDF
    IMPLIED WARRANTY OF WORKMANLIKE PERFORMANCE--ONE WHO CONTRACTS TO PROVIDE MARITIME SERVICES IMPLIEDLY AGREES TO PERFORM IN A DILIGENT AND WORKMANLIKE MANNE

    Barriers to the Localness of Volunteered Geographic Information

    Full text link
    Localness is an oft-cited benefit of volunteered ge-ographic information (VGI). This study examines whether localness is a constant, universally shared ben-efit of VGI, or one that varies depending on the context in which it is produced. Focusing on articles about ge-ographic entities (e.g. cities, points of interest) in 79 language editions of Wikipedia, we examine the local-ness of both the editors working on articles and the sources of the information they cite. We find extensive geographic inequalities in localness, with the degree of localness varying with the socioeconomic status of the local population and the health of the local media. We also point out the key role of language, showing that information in languages not native to a place tends to be produced and sourced by non-locals. We discuss the implications of this work for our understanding of the nature of VGI and highlight a generalizable technical contribution: an algorithm that determines the home country of the original publisher of online content

    A Study of ^3He Spectra and Abundances in Impulsive Solar Energetic Particle Events - Results from Measurements with ACE/SEPICA, ACE/SIS and SOHO/HSTOF

    Get PDF
    Energy spectra of the He isotopes and the energy dependence of the ^3He/^4He ratio during a number of impulsive solar energetic particle events (SEP) observed between September 1997 and December 1998 are analyzed. Data covering the energy range from 0.1 to 10 MeV/amu were supplied by three instruments with complementary energy ranges: the Solar Energetic Particle Ionic Charge Analyzer (SEPICA) and the Solar Isotope Spectrometer (SIS) on ACE, and the time-of-flight mass spectrometer HSTOF on SOHO. We confirm the trend of a monotonic increase of the 3He abundance with energy up to a maximum in the region of a few MeV/amu found in previous ISEE studies and extend the analysis to events of intermediate 3He enrichment. We briefly discuss the observational data and their relation to existing theoretical work on selection and acceleration mechanisms in impulsive flares

    Rapidly detecting disorder in rhythmic biological signals: A spectral entropy measure to identify cardiac arrhythmias

    Full text link
    We consider the use of a running measure of power spectrum disorder to distinguish between the normal sinus rhythm of the heart and two forms of cardiac arrhythmia: atrial fibrillation and atrial flutter. This spectral entropy measure is motivated by characteristic differences in the spectra of beat timings during the three rhythms. We plot patient data derived from ten-beat windows on a "disorder map" and identify rhythm-defining ranges in the level and variance of spectral entropy values. Employing the spectral entropy within an automatic arrhythmia detection algorithm enables the classification of periods of atrial fibrillation from the time series of patients' beats. When the algorithm is set to identify abnormal rhythms within 6 s it agrees with 85.7% of the annotations of professional rhythm assessors; for a response time of 30 s this becomes 89.5%, and with 60 s it is 90.3%. The algorithm provides a rapid way to detect atrial fibrillation, demonstrating usable response times as low as 6 s. Measures of disorder in the frequency domain have practical significance in a range of biological signals: the techniques described in this paper have potential application for the rapid identification of disorder in other rhythmic signals.Comment: 11 page

    Design, Commissioning and Performance of the PIBETA Detector at PSI

    Full text link
    We describe the design, construction and performance of the PIBETA detector built for the precise measurement of the branching ratio of pion beta decay, pi+ -> pi0 e+ nu, at the Paul Scherrer Institute. The central part of the detector is a 240-module spherical pure CsI calorimeter covering 3*pi sr solid angle. The calorimeter is supplemented with an active collimator/beam degrader system, an active segmented plastic target, a pair of low-mass cylindrical wire chambers and a 20-element cylindrical plastic scintillator hodoscope. The whole detector system is housed inside a temperature-controlled lead brick enclosure which in turn is lined with cosmic muon plastic veto counters. Commissioning and calibration data were taken during two three-month beam periods in 1999/2000 with pi+ stopping rates between 1.3*E3 pi+/s and 1.3*E6 pi+/s. We examine the timing, energy and angular detector resolution for photons, positrons and protons in the energy range of 5-150 MeV, as well as the response of the detector to cosmic muons. We illustrate the detector signatures for the assorted rare pion and muon decays and their associated backgrounds.Comment: 117 pages, 48 Postscript figures, 5 tables, Elsevier LaTeX, submitted to Nucl. Instrum. Meth.
    corecore