4,197 research outputs found

    Axially Symmetric Solutions for SU(2) Yang-Mills Theory

    Get PDF
    By casting the Yang-Mills-Higgs equations of an SU(2) theory in the form of the Ernst equations of general relativity, it is shown how the known exact solutions of general relativity can be used to give similiar solutions for Yang-Mills theory. Thus all the known exact solutions of general relativity with axial symmetry (e.g. the Kerr metric, the Tomimatsu-Sato metric) have Yang-Mills equivalents. In this paper we only examine in detail the Kerr-like solution. It will be seen that this solution has surfaces where the gauge and scalar fields become infinite, which correspond to the infinite redshift surfaces of the normal Kerr solution. It is speculated that this feature may be connected with the confinement mechanism since any particle which carries an SU(2) color charge would tend to become trapped once it passes these surfaces. Unlike the Kerr solution, our solution apparently does not have any intrinsic angular momentum, but rather appears to give the non-Abelian field configuration associated with concentric shells of color charge.Comment: 15 pages LaTe

    Subtleties in the quasi-classical calculation of Hawking radiation

    Full text link
    he quasi-classical method of deriving Hawking radiation is investigated. In order to recover the original Hawking temperature one must take into account a previously ignored contribution coming from the temporal part of the action. This contribution plus a contribution coming from the spatial part of the action gives the correct temperature.Comment: 6 pages revtex. Honorable Mention in 2008 GRF essay contest, typos fixed, sign errors corrected. To be published in Special Issue of IJMP

    The general relativistic infinite plane

    Get PDF
    Uniform fields are one of the simplest and most pedagogically useful examples in introductory courses on electrostatics or Newtonian gravity. In general relativity there have been several proposals as to what constitutes a uniform field. In this article we examine two metrics that can be considered the general relativistic version of the infinite plane with finite mass per unit area. The first metric is the 4D version of the 5D "brane" world models which are the starting point for many current research papers. The second case is the cosmological domain wall metric. We examine to what extent these different metrics match or deviate from our Newtonian intuition about the gravitational field of an infinite plane. These solutions provide the beginning student in general relativity both computational practice and conceptual insight into Einstein's field equations. In addition they do this by introducing the student to material that is at the forefront of current research.Comment: Accepted for publication in the American Journal of Physic

    Exact Schwarzschild-Like Solution for Yang-Mills Theories

    Get PDF
    Drawing on the parallel between general relativity and Yang-Mills theory we obtain an exact Schwarzschild-like solution for SU(2) gauge fields coupled to a massless scalar field. Pushing the analogy further we speculate that this classical solution to the Yang-Mills equations shows confinement in the same way that particles become confined once they pass the event horizon of the Schwarzschild solution. Two special cases of the solution are considered.Comment: 11 pages LaTe

    On the physical meaning of the Unruh effect

    Full text link
    We present simple arguments that detectors moving with constant acceleration (even acceleration for a finite time) should detect particles. The effect is seen to be universal. Moreover, detectors undergoing linear acceleration and uniform, circular motion both detect particles for the same physical reason. We show that if one uses a circularly orbiting electron in a constant external magnetic field as the Unruh--DeWitt detector, then the Unruh effect physically coincides with the experimentally verified Sokolov--Ternov effect.Comment: 7 pages, 0 figures references added, small changes in text. To be published JETP Lett

    Small animal disease surveillance: respiratory disease 2017

    Get PDF
    This report focuses on surveillance for respiratory disease in companion animals. It begins with an analysis of data from 392 veterinary practices contributing to the Small Animal Veterinary Surveillance Network (SAVSNET) between January and December 2017. The following section describes canine respiratory coronavirus infections in dogs, presenting results from laboratory-confirmed cases across the country between January 2010 and December 2017. This is followed by an update on the temporal trends of three important syndromes in companion animals, namely gastroenteritis, pruritus and respiratory disease, from 2014 to 2017. A fourth section presents a brief update on Streptococcus equi subspecies zooepidemicus in companion animals. The final section summarises some recent developments pertinent to companion animal health, namely eyeworm (Thelazzia callipaeda) infestations in dogs imported to the UK and canine influenza virus in the USA and Canada

    Opening of DNA double strands by helicases. Active versus passive opening

    Get PDF
    Helicase opening of double-stranded nucleic acids may be "active" (the helicase directly destabilizes the dsNA to promote opening) or "passive" (the helicase binds ssNA available due to a thermal fluctuation which opens part of the dsNA). We describe helicase opening of dsNA, based on helicases which bind single NA strands and move towards the double-stranded region, using a discrete ``hopping'' model. The interaction between the helicase and the junction where the double strand opens is characterized by an interaction potential. The form of the potential determines whether the opening is active or passive. We calculate the rate of passive opening for the helicase PcrA, and show that the rate increases when the opening is active. Finally, we examine how to choose the interaction potential to optimize the rate of strand separation. One important result is our finding that active opening can increase the unwinding rate by 7 fold compared to passive opening.Comment: 13 pages, 3 figure

    Uncovering predictability in the evolution of the WTI oil futures curve

    Full text link
    Accurately forecasting the price of oil, the world's most actively traded commodity, is of great importance to both academics and practitioners. We contribute by proposing a functional time series based method to model and forecast oil futures. Our approach boasts a number of theoretical and practical advantages including effectively exploiting underlying process dynamics missed by classical discrete approaches. We evaluate the finite-sample performance against established benchmarks using a model confidence set test. A realistic out-of-sample exercise provides strong support for the adoption of our approach with it residing in the superior set of models in all considered instances.Comment: 28 pages, 4 figures, to appear in European Financial Managemen

    Recent Advances in Unconventional Density Waves

    Full text link
    Unconventional density wave (UDW) has been speculated as a possible electronic ground state in excitonic insulator in 1968. Recent surge of interest in UDW is partly due to the proposal that the pseudogap phase in high T_c cuprate superconductors is d-wave density wave (d-DW). Here we review our recent works on UDW within the framework of mean field theory. In particular we have shown that many properties of the low temperature phase (LTP) in alpha-(BEDT-TTF)_2MHg(SCN)_4 with M=K, Rb and Tl are well characterized in terms of unconventional charge density wave (UCDW). In this identification the Landau quantization of the quasiparticle motion in a magnetic field (the Nersesyan effect) plays the crucial role. Indeed the angular dependent magnetoresistance and the negative giant Nernst effect are two hallmarks of UDW.Comment: 18 pages, 12 figure
    corecore