14,282 research outputs found

    Spin-Peierls states of quantum antiferromagnets on the CaV4O9Ca V_4 O_9 lattice

    Full text link
    We discuss the quantum paramagnetic phases of Heisenberg antiferromagnets on the 1/5-depleted square lattice found in CaV4O9Ca V_4 O_9. The possible phases of the quantum dimer model on this lattice are obtained by a mapping to a quantum-mechanical height model. In addition to the ``decoupled'' phases found earlier, we find a possible intermediate spin-Peierls phase with spontaneously-broken lattice symmetry. Experimental signatures of the different quantum paramagnetic phases are discussed.Comment: 9 pages; 2 eps figure

    Ground State Entropy of the Potts Antiferromagnet on Cyclic Strip Graphs

    Full text link
    We present exact calculations of the zero-temperature partition function (chromatic polynomial) and the (exponent of the) ground-state entropy S0S_0 for the qq-state Potts antiferromagnet on families of cyclic and twisted cyclic (M\"obius) strip graphs composed of pp-sided polygons. Our results suggest a general rule concerning the maximal region in the complex qq plane to which one can analytically continue from the physical interval where S0>0S_0 > 0. The chromatic zeros and their accumulation set B{\cal B} exhibit the rather unusual property of including support for Re(q)<0Re(q) < 0 and provide further evidence for a relevant conjecture.Comment: 7 pages, Latex, 4 figs., J. Phys. A Lett., in pres

    The XMM-Newton Slew Survey

    Full text link
    XMM-Newton, with the huge collecting area of its mirrors and the high quantum efficiency of its EPIC detectors, is the most sensitive X-ray observatory ever flown. This is strikingly evident during slew exposures, which, while yielding only at most 14 seconds of on-source exposure time, actually constitute a 2-10 keV survey ten times deeper than all other "all-sky" surveys. The current (April 2005) XMM archive contains 374 slew exposures which give a uniform coverage over around 10,000 square degrees (approx. 25% of the sky). Here we describe the results of pilot studies, the current status of the XMM-Newton Slew Survey, up-to-date results and our progress towards constructing a catalogue of slew detections in the full 0.2-12 keV energy band.Comment: 3 pages, 4 figures, XMM-Newton EPIC Consortium Meeting, Schloss Ringberg, Germany, April 2005, to appear in MPE Repor

    The XMM-Newton Slew Survey: towards the XMMSL1 catalogue

    Full text link
    The XMM-Newton satellite is the most sensitive X-ray observatory flown to date due to the great collecting area of its mirrors coupled with the high quantum efficiency of the EPIC detectors. It performs slewing manoeuvers between observation targets tracking almost circular orbits through the ecliptic poles due to the Sun constraint. Slews are made with the EPIC cameras open and the other instruments closed, operating with the observing mode set to the one of the previous pointed observation and the medium filter in place. Slew observations from the EPIC-pn camera in FF, eFF and LW modes provide data, resulting in a maximum of 15 seconds of on-source time. These data can be used to give a uniform survey of the X-ray sky, at great sensitivity in the hard band compared with other X-ray all-sky surveys.Comment: 2 pages, 2 figures, to appear in the proceedings of "The X-ray Universe 2005", San Lorenzo de El Escorial (Spain), 26-30 September 200

    TEMPERATURE-DEPENDENCE OF DOMAIN-WALL COERCIVE FIELD IN MAGNETIC GARNET-FILMS

    Get PDF
    The coercive properties of magnetically uniaxial liquid-phase epitaxy garnet films were investigated between 10 K and the Neel temperature (T(N) less-than-or-equal-to 500 K). Two independent methods, the results of which are nearly identical (magnetical response of oscillating domain walls and the method of coercive loops measured in a vibrating sample magnetometer), were used. Besides the usual domain-wall coercive field, H(dw), the critical coercive pressure, p(dw), was also introduced as it describes in a direct way the interactions of the domain walls with the wall-pinning traps. Both H(dw) and p(dw) were found to increase exponentially with decreasing temperature. Three different types of wall-pinning traps were identified in the sample and their strength, their rate of change with temperature, and their temperature range of activity were determined

    Quasiholes and fermionic zero modes of paired fractional quantum Hall states: the mechanism for nonabelian statistics

    Full text link
    The quasihole states of several paired states, the Pfaffian, Haldane-Rezayi, and 331 states, which under certain conditions may describe electrons at filling factor ν=1/2\nu=1/2 or 5/2, are studied, analytically and numerically, in the spherical geometry, for the Hamiltonians for which the ground states are known exactly. We also find all the ground states (without quasiparticles) of these systems in the toroidal geometry. In each case, a complete set of linearly-independent functions that are energy eigenstates of zero energy is found explicitly. For fixed positions of the quasiholes, the number of linearly-independent states is 2n12^{n-1} for the Pfaffian, 22n32^{2n-3} for the Haldane-Rezayi state; these degeneracies are needed if these systems are to possess nonabelian statistics, and they agree with predictions based on conformal field theory. The dimensions of the spaces of states for each number of quasiholes agree with numerical results for moderate system sizes. The effects of tunneling and of the Zeeman term are discussed for the 331 and Haldane-Rezayi states, as well as the relation to Laughlin states of electron pairs. A model introduced by Ho, which was supposed to connect the 331 and Pfaffian states, is found to have the same degeneracies of zero-energy states as the 331 state, except at its Pfaffian point where it is much more highly degenerate than either the 331 or the Pfaffian. We introduce a modification of the model which has the degeneracies of the 331 state everywhere including the Pfaffian point; at the latter point, tunneling reduces the degeneracies to those of the Pfaffian state. An experimental difference is pointed out between the Laughlin states of electron pairs and the other paired states, in the current-voltage response when electrons tunnel into the edge. And there's more.Comment: 43 pages, requires RevTeX. The 14 figures and 2 tables are available on request at [email protected] (include mailing address

    Extended sources in the XMM-Newton slew survey

    Full text link
    The low background, good spatial resolution and great sensitivity of the EPIC-pn camera on XMM-Newton give useful limits for the detection of extended sources even during the short exposures made during slewing maneouvers. In this paper we attempt to illustrate the potential of the XMM-Newton slew survey as a tool for analysing flux-limited samples of clusters of galaxies and other sources of spatially extended X-ray emission.Comment: 2 pages, 4 figures, to appear in the proceedings of "The X-ray Universe 2005", San Lorenzo de El Escorial (Spain), 26-30 September 200

    Density of quasiparticle states for a two-dimensional disordered system: Metallic, insulating, and critical behavior in the class D thermal quantum Hall effect

    Get PDF
    We investigate numerically the quasiparticle density of states ϱ(E)\varrho(E) for a two-dimensional, disordered superconductor in which both time-reversal and spin-rotation symmetry are broken. As a generic single-particle description of this class of systems (symmetry class D), we use the Cho-Fisher version of the network model. This has three phases: a thermal insulator, a thermal metal, and a quantized thermal Hall conductor. In the thermal metal we find a logarithmic divergence in ϱ(E)\varrho(E) as E0E\to 0, as predicted from sigma model calculations. Finite size effects lead to superimposed oscillations, as expected from random matrix theory. In the thermal insulator and quantized thermal Hall conductor, we find that ϱ(E)\varrho(E) is finite at E=0. At the plateau transition between these phases, ϱ(E)\varrho(E) decreases towards zero as E|E| is reduced, in line with the result ϱ(E)Eln(1/E)\varrho(E) \sim |E|\ln(1/|E|) derived from calculations for Dirac fermions with random mass.Comment: 8 pages, 8 figures, published versio

    Stability of Chiral Luttinger Liquids and Abelian Quantum Hall States.

    Full text link
    A criterion is given for topological stability of Abelian quantum Hall states, and of Luttinger liquids at the boundaries between such states; this suggests a selection rule on states in the quantum Hall hierarchy theory. The linear response of Luttinger liquids to electromagnetic fields is described: the Hall conductance is quantized, irrespective of whether edge modes propagate in different directions.Comment: 12 pages, LaTeX (RevTeX 3.0
    corecore