22,251 research outputs found
The implications of precise timekeeping of Doppler gravitational wave observations
Gravitational radiation from galactic and extragalactic astrophysical sources will induce spatial strains in the solar system, strains which can be measured directly by the Doppler radio link to distant spacecraft. Current noise sources in Pioneer and Voyager Doppler data are delineated and a comparison is made with expected signal levels from gravitational wave sources. The main conclusion is that it is possible to detect gravitational radiation with current DSN hydrogen maser systems stable in fractional frequency + or - 2 x 10 to the minus 14th power over 1000 sec. In the future, however, a serious Doppler observational program in gravitational wave astronomy will require frequency systems stable to at least 10 to the minus 16th power, but at the same time the current single frequency S-band uplink transmission will have to be replaced by a dual frequency capability
Weakly bound states of polar molecules in bilayers
We investigate a system of two polarized molecules in a layered trap. The
molecules reside in adjacent layers and interact purely via the dipole-dipole
interaction. We determine the properties of the ground state of the system as a
function of the dipole moment and polarization angle. A bound state is always
present in the system and in the weak binding limit the bound state extends to
a very large distance and shows universal behavior.Comment: Presented at the 21st European Conference on Few-Body Problems in
Physics, Salamanca, Spain, 30 August - 3 September 201
Optimal projection filters with information geometry
We review the introduction of several types of projection filters. Projection structures coming from information geometry are used to obtain a finite dimensional filter in the form of a stochastic differential equation (SDE), starting from the exact infinite-dimensional stochastic partial differential equation (SPDE) for the optimal filter. We start with the Stratonovich projection filters based on the Hellinger distance as introduced and developed in Brigo, Hanzon and Le Gland (1998, 1999) [19, 20], where the SPDE is put in Stratonovich form before projection, hence the term “Stratonovich projection”. The correction step of the filtering algorithm can be made exact by choosing a suitable exponential family as manifold, there is equivalence with assumed density filters and numerical examples have been studied. Other authors further developed these projection filters and we present a brief literature review. A second type of Stratonovich projection filters was introduced in Armstrong and Brigo (2016) [6] where a direct L2 metric is used for projection. Projecting on mixtures of densities as a manifold coincides with Galerkin methods. All the above projection filters lack optimality, as the single vector fields of the Stratonovich SPDE are projected optimally but the SPDE solution as a whole is not approximated optimally by the projected SDE solution according to a clear criterion. This led to the optimal projection filters in Armstrong, Brigo and Rossi Ferrucci (2019, 2018) [10, 9], based on the Ito vector and Ito jet projections, where several types of mean square distances between the optimal filter SPDE solution and the sought finite dimensional SDE approximations are minimized, with numerical examples. After reviewing the above developments, we conclude with the remaining challenges
Shorter juvenile telomere length is associated with higher survival to spawning in migratory Atlantic salmon
The risk of mortality associated with a long-distance migration will depend on an animal's physiological state, as well as the prevailing ecological conditions. Here we assess whether juvenile telomere length, which in endotherms has been shown to be a biomarker of physiological state and expected lifespan, predicts whether wild Atlantic salmon Salmo salar successfully complete their marine migration.
Over 1800 juvenile fish were trapped, measured, PIT-tagged and a tissue biopsy taken when migrating as juveniles down-river towards the sea. Survivors of the marine phase of the life cycle were then re-trapped and re-sampled when returning to the river to spawn as sexually mature adults, 1.5-2.5 years later. Most individuals experienced a reduction in telomere length during the marine migratory phase of their life cycle. While the relative rate of telomere loss was greater in males than females, telomere loss was unrelated to growth at sea.
Contrary to expectations, salmon that had the shortest telomeres at the time of the outward migration had the greatest probability of surviving through to the return migration. This effect, independent of body size, may indicate a trade-off between investment in readiness for marine life (which favours high glucocorticoid levels, known to increase telomere attrition in other vertebrate species) and investment in telomere maintenance. Survival was also significantly influenced by the seasonal timing of outward migration, with the fish migrating downstream earliest in the spring having the highest probability of return.
This study reveals that telomere length is associated with survival, although in ways that contrast with patterns seen in endotherms. This illustrates that while telomeres may be universally important for chromosome protection, the potential for telomere dynamics to predict performance may vary across taxa
Synthesis and characterization of biodegradable lignin nanoparticles with tunable surface properties
Lignin nanoparticles can serve as biodegradable carriers of biocidal actives with minimal environmental footprint. Here we describe the colloidal synthesis and interfacial design of nanoparticles with tunable surface properties using two different lignin precursors, Kraft (Indulin AT) lignin and Organosolv (high-purity lignin). The green synthesis process is based on flash precipitation of dissolved lignin polymer, which enabled the formation of nanoparticles in the size range of 45–250 nm. The size evolution of the two types of lignin particles is fitted on the basis of modified diffusive growth kinetics and mass balance dependencies. The surface properties of the nanoparticles are fine-tuned by coating them with a cationic polyelectrolyte, poly(diallyldimethylammonium chloride). We analyze how the colloidal stability and dispersion properties of these two types of nanoparticles vary as a function of pH and salinities. The data show that the properties of the nanoparticles are governed by the type of lignin used and the presence of polyelectrolyte surface coating. The coating allows the control of the nanoparticles’ surface charge and the extension of their stability into strongly basic regimes, facilitating their potential application at extreme pH conditions
- …