21,281,158 research outputs found

    Observation of B0D+DB^0 \to D^+ D^-, BD0DB^- \to D^0 D^- and BD0DB^- \to D^0 D^{*-} decays

    Get PDF
    We report the first observation of the decay modes B0D+DB^0 \to D^+ D^-, BD0DB^- \to D^0 D^- and BD0DB^- \to D^0 D^{*-} based on 152 ×\times 106^6 BBˉB\bar{B} events collected at KEKB. The branching fractions of B0D+DB^0 \to D^+ D^-, BD0DB^- \to D^0 D^- and BD0DB^- \to D^0 D^{*-} are found to be (3.21±0.57±0.48)×104(3.21 \pm 0.57 \pm 0.48) \times 10^{-4}, (5.62±0.82±0.65)×104(5.62 \pm 0.82 \pm 0.65) \times 10^{-4} and (4.59±0.72±0.56)×104(4.59 \pm 0.72 \pm 0.56) \times 10^{-4}, respectively. Charge asymmetries in the BD0DB^- \to D^0 D^- and BD0DB^- \to D^0 D^{*-} channels are consistent with zero.Comment: 9 pages, 2 figures, KEK Preprint 2004-99, Belle Prerpint 2005-3, submitted to PR

    Strong D* -> D+pi and B* -> B+pi couplings

    Full text link
    We compute g_{D* D pi} and g_{B* B pi} using a framework in which all elements are constrained by Dyson-Schwinger equation studies of QCD, and therefore incorporates a consistent, direct and simultaneous description of light- and heavy-quarks and the states they may constitute. We link these couplings with the heavy-light-meson leptonic decay constants, and thereby obtain g_{D* D pi}=15.9+2.1/-1.0 and g_{B* B pi}=30.0+3.2/-1.4. From the latter we infer \hat-g_B=0.37+0.04/-0.02. A comparison between g_{D* D pi} and g_{B* B pi} indicates that when the c-quark is a system's heaviest constituent, Lambda_{QCD}/m_c-corrections are not under good control.Comment: 5 pages, 1 table, 2 figure

    Coupled-channel analysis of the possible D()D()D^{(*)}D^{(*)}, Bˉ()Bˉ()\bar{B}^{(*)}\bar{B}^{(*)} and D()Bˉ()D^{(*)}\bar{B}^{(*)} molecular states

    Get PDF
    We perform a coupled-channel study of the possible deuteron-like molecules with two heavy flavor quarks, including the systems of D()D()D^{(*)}D^{(*)} with double charm, Bˉ()Bˉ()\bar{B}^{(*)}\bar{B}^{(*)} with double bottom and D()Bˉ()D^{(*)}\bar{B}^{(*)} with both charm and bottom, within the one-boson-exchange model. In our study, we take into account the S-D mixing which plays an important role in the formation of the loosely bound deuteron, and particularly, the coupled-channel effect in the flavor space. According to our calculation, the states D()D()[I(JP)=0(1+)]D^{(*)}D^{(*)}[I(J^P)=0(1^+)] and (D()D())s[JP=1+](D^{(*)}D^{(*)})_s[J^P=1^+] with double charm, the states Bˉ()Bˉ()[I(JP)=0(1+),0(2+),1(0+),1(1+),1(2+)]\bar{B}^{(*)}\bar{B}^{(*)}[I(J^P)=0(1^+),0(2^+),1(0^+),1(1^+),1(2^+)], (Bˉ()Bˉ())s[JP=0+,1+,2+](\bar{B}^{(*)}\bar{B}^{(*)})_s[J^P=0^+,1^+,2^+] and (Bˉ()Bˉ())ss[JP=0+,1+,2+](\bar{B}^{(*)}\bar{B}^{(*)})_{ss}[J^P=0^+,1^+,2^+] with double bottom, and the states D()Bˉ()[I(JP)=0(0+),0(1+)]D^{(*)}\bar{B}^{(*)}[I(J^P)=0(0^+),0(1^+)] and (D()Bˉ())s[JP=0+,1+](D^{(*)}\bar{B}^{(*)})_s[J^P=0^+,1^+] with both charm and bottom are good molecule candidates. However, the existence of the states D()D()[I(JP)=0(2+)]D^{(*)}D^{(*)}[I(J^P)=0(2^+)] with double charm and D()Bˉ()[I(JP)=1(1+)]D^{(*)}\bar{B}^{(*)}[I(J^P)=1(1^+)] with both charm and bottom is ruled out.Comment: 1 figure added, published in Physical Review

    Study of the leptonic decays of pseudoscalar B,DB, D and vector B,DB^*, D^* mesons and of the semileptonic BDB\to D and BDB\to D^* decays

    Get PDF
    We present results for different observables in weak decays of pseudoscalar and vector mesons with a heavy cc or bb quark. The calculations are done in a nonrelativistic constituent quark model improved at some instances by heavy quark effective theory constraints. We determine pseudoscalar and vector meson decay constants that within a few per cent satisfy fVMV/fPMP=1f_V M_V/f_P M_P=1, a result expected in heavy quark symmetry when the heavy quark masses tend to infinity. We also analyze the semileptonic BDB\to D and BDB\to D^* decays for which we evaluate the different form factors. Here we impose heavy quark effective theory constraints among form factors that are not satisfied by a direct quark model calculation. The value of the form factors at zero recoil allows us to determine, by comparison with experimental data, the value of the Vcb|V_{cb}| Cabbibo-Kobayashi-Maskawa matrix element. From the BDB\to D semileptonic decay we get Vcb=0.040±0.006|V_{cb}|=0.040\pm0.006 in perfect agreement with our previous determination based on the study of the semileptonic ΛbΛc\Lambda_b\to \Lambda_c decay and also in excellent agreement with a recent experimental determination by the DELPHI Collaboration. We further make use of the partial conservation of axial current hypothesis to determine the strong coupling constants gBBπ(0)=60.5±1.1g_{B^*B\pi}(0)=60.5\pm 1.1 and gDDπ(0)=22.1±0.4g_{D^*D\pi}(0)=22.1\pm0.4. The ratio R=(gBBπ(0)fBMD)/(gDDπ(0)fDMB)=1.105±0.005R=(g_{B^*B\pi}(0) f_{B^*}\sqrt{M_D})/ (g_{D^*D\pi}(0) f_{D^*}\sqrt{M_B})=1.105\pm0.005 agrees with the heavy quark symmetry prediction of 1.Comment: 19 Latex pages,6 figures, references added, corrected typos, content enlarge

    Search for the Decays B^0 -> D^{(*)+} D^{(*)-}

    Full text link
    Using the CLEO-II data set we have searched for the Cabibbo-suppressed decays B^0 -> D^{(*)+} D^{(*)-}. For the decay B^0 -> D^{*+} D^{*-}, we observe one candidate signal event, with an expected background of 0.022 +/- 0.011 events. This yield corresponds to a branching fraction of Br(B^0 -> D^{*+} D^{*-}) = (5.3^{+7.1}_{-3.7}(stat) +/- 1.0(syst)) x 10^{-4} and an upper limit of Br(B^0 -> D^{*+} D^{*-}) D^{*\pm} D^\mp and B^0 -> D^+ D^-, no significant excess of signal above the expected background level is seen, and we calculate the 90% CL upper limits on the branching fractions to be Br(B^0 -> D^{*\pm} D^\mp) D^+ D^-) < 1.2 x 10^{-3}.Comment: 12 page postscript file also available through http://w4.lns.cornell.edu/public/CLNS, submitted to Physical Review Letter

    Observation of the decay B^0->D+D*-

    Full text link
    We report the first observation of the decay B^0->D+-D*-+ with the Belle detector at the KEKB e^+e^- collider operated at the Upsilon(4S) resonance. The sum of branching fractions B(B^0->D+D*-)+B(B^0->D-D*+) is measured to be (1.17+-0.26+0.22-0.25)x10^-3 using the full reconstruction method where both charmed mesons from B^0 decays are reconstructed. A consistent value ((1.48+-0.38+0.28-0.31)x10^-3) is obtained using a partial reconstruction technique that only uses the slow pion from the D*- ->bar D^0pi- decay and a fully reconstructed D+ to reconstruct the B^0.Comment: 10 pages, 3 figure

    Analysis of the Y(4140) and related molecular states with QCD sum rules

    Full text link
    In this article, we assume that there exist scalar DDˉ{D}^\ast {\bar {D}}^\ast, DsDˉs{D}_s^\ast {\bar {D}}_s^\ast, BBˉ{B}^\ast {\bar {B}}^\ast and BsBˉs{B}_s^\ast {\bar {B}}_s^\ast molecular states, and study their masses using the QCD sum rules. The numerical results indicate that the masses are about (250500)MeV(250-500) \rm{MeV} above the corresponding DDˉ{D}^\ast -{\bar {D}}^\ast, DsDˉs{D}_s^\ast -{\bar {D}}_s^\ast, BBˉ{B}^\ast -{\bar {B}}^\ast and BsBˉs{B}_s^\ast -{\bar {B}}_s^\ast thresholds, the Y(4140) is unlikely a scalar DsDˉs{D}_s^\ast {\bar {D}}_s^\ast molecular state. The scalar DDˉD^\ast {\bar D}^\ast, DsDˉsD_s^\ast {\bar D}_s^\ast, BBˉB^\ast {\bar B}^\ast and BsBˉsB_s^\ast {\bar B}_s^\ast molecular states maybe not exist, while the scalar DDˉ{D'}^\ast {\bar {D'}}^\ast, DsDˉs{D'}_s^\ast {\bar {D'}}_s^\ast, BBˉ{B'}^\ast {\bar {B'}}^\ast and BsBˉs{B'}_s^\ast {\bar {B'}}_s^\ast molecular states maybe exist.Comment: 19 pages, 36 figures, slight revisio
    corecore