458 research outputs found

    Particle relabelling transformations in elastodynamics

    Get PDF
    The motion of a self-gravitating hyperelastic body is described through a time-dependent mapping from a reference body into physical space, and its material properties are determined by a referential density and strain-energy function defined relative to the reference body. Points within the reference body do not have a direct physical meaning, but instead act as particle labels that could be assigned in different ways. We use Hamilton’s principle to determine how the referential density and strain-energy functions transform when the particle labels are changed, and describe an associated “particle relabelling symmetry”. We apply these results to linearised elastic wave propagation, and discuss their implications for seismological inverse problems. In particular, we show that the effects of boundary topography on elastic wave propagation can be mapped exactly into volumetric heterogeneity while preserving the form of the equations of motion. Several numerical calculations are presented to illustrate our results.O.C. is supported through a NERC PhD studentship.This is the final version of the article. It first appeared from Oxford University Press via http://dx.doi.org/10.1093/gji/ggw03

    Intrinsic non-uniqueness of the acoustic full waveform inverse problem

    Get PDF
    SUMMARY In the context of seismic imaging, full waveform inversion (FWI) is increasingly popular. Because of its lower numerical cost, the acoustic approximation is often used, especially at the exploration geophysics scale, both for tests and for real data. Moreover, some research domains such as helioseismology face true acoustic media for which FWI can be useful. In this work, an argument that combines particle relabelling and homogenization is used to show that the general acoustic inverse problem based on band-limited data is intrinsically non-unique. It follows that the results of such inversions should be interpreted with caution. To illustrate these ideas, we consider 2-D numerical FWI examples based on a Gauss–Newton iterative inversion scheme and demonstrate effects of this non-uniqueness in the local optimization context.</jats:p

    Exact free oscillation spectra, splitting functions and the resolvability of earth's density structure

    Get PDF
    Seismic free oscillations, or normal modes, provide a convenient tool to calculate low-frequency seismograms in heterogeneous Earth models. A procedure called ‘full mode coupling’ allows the seismic response of the Earth to be computed. However, in order to be theoretically exact, such calculations must involve an infinite set of modes. In practice, only a finite subset of modes can be used, introducing an error into the seismograms. By systematically increasing the number of modes beyond the highest frequency of interest in the seismograms, we investigate the convergence of full-coupling calculations. As a rule-of-thumb, it is necessary to couple modes 1–2 mHz above the highest frequency of interest, although results depend upon the details of the Earth model. This is significantly higher than has previously been assumed. Observations of free oscillations also provide important constraints on the heterogeneous structure of the Earth. Historically, this inference problem has been addressed by the measurement and interpretation of splitting functions. These can be seen as secondary data extracted from low frequency seismograms. The measurement step necessitates the calculation of synthetic seismograms, but current implementations rely on approximations referred to as self- or group-coupling and do not use fully accurate seismograms. We therefore also investigate whether a systematic error might be present in currently published splitting functions. We find no evidence for any systematic bias, but published uncertainties must be doubled to properly account for the errors due to theoretical omissions and regularization in the measurement process. Correspondingly, uncertainties in results derived from splitting functions must also be increased. As is well known, density has only a weak signal in low-frequency seismograms. Our results suggest this signal is of similar scale to the true uncertainties associated with currently published splitting functions. Thus, it seems that great care must be taken in any attempt to robustly infer details of Earth's density structure using current splitting functions.The research leading to these results has received funding from the European Research Council (ERC) under the European Union’s Seventh Framework Programme (FP/2007-2013) grant agreement number 320639 (iGEO) and under the European Union’s Horizon 2020 research and innovation programme grant agreement number 681535 (ATUNE)

    Silent onset of postmenopausal endometriosis in a woman with renal failure in hormone replacement therapy: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Postmenopausal endometriosis is a rare form of a common disease, since the absence of estrogenic hormone production should halt disease progression.</p> <p>Case presentation</p> <p>We present the case of a 54-year-old Italian Caucasian woman in surgical menopause with a history of ovarian endometriosis, who underwent voluntary hormone replacement therapy for seven years. She developed postrenal renal failure due to bilateral compression of the pelvic ureteral tract caused by two large, deeply infiltrating endometriotic nodules with no pelvic pain. She underwent operative laparoscopy with adhesiolysis of enteroenteric adhesions and excision of the endometriotic nodules encompassing the juxtavesical tract of the ureters, without obtaining improvement of renal failure.</p> <p>Conclusion</p> <p>Postmenopausal endometriosis can manifest itself in an unpredictable and potentially very serious manner. It is therefore important to carefully evaluate the risks and benefits of administering hormone replacement therapy to patients with previous endometriosis.</p
    • 

    corecore