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SUMMARY

We present a generalized theory governing gravitationally self-consistent, spatio-temporal

sea-level changes within an ocean-plus-lake system that is intermittently connected by

water mass flux across a sill. Our expressions for the change in sea level (defined as the

difference in height of the sea surface equipotential relative to the solid surface) hold for

any Earth model, and easily incorporate effects of viscoelastic deformation of the solid

Earth and perturbations in both the gravitational field and rotation vector (as is now stan-

dard in ice-age sea-level calculations). In its most general form, the theory also includes

an exact treatment of the evolving shoreline position in both water bodies. Our formalism

involves three cases: (1) one global ocean, in which mass transfer may occur between

ice sheets and the global ocean; (2) an ocean and lake separated by an exposed sill, in

which mass transfer may occur between ice sheets and the global ocean, and between

the ocean and lake via evaporative flux; and (3) transitional phases between these two

states, when the ocean surface reaches the height of the sill from below (i.e., the sill is

breached) or above (the sill is exposed). We illustrate the new theory using examples

from the Black Sea flooding during the last deglacial phase (∼10 ka) and sea-level fall in

the Mediterranean Sea during the Messinian Salinity Crisis (5.96-5.33 Ma). These exam-
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ples demonstrate the importance of including the geophysical feedbacks associated with

sea-level change in an isolated basin in the dynamics of flooding and desiccation.

Key words: Sea level change, Loading of the Earth

1 INTRODUCTION

The theory governing gravitationally self-consistent ice-age sea-level changes has its roots in studies

dating back more than a century (Woodward, 1888). The first modern treatment of the problem was

given in the classic article of Farrell and Clark (1976), which calculated sea-level changes driven by

ice mass flux on non-rotating, spherically symmetric Earth models, and in deriving their so-called

”sea-level equation”, it was assumed that geometry of shorelines was fixed in time. Under the assump-

tion of 1-D (i.e., depth varying) Earth properties, the perturbation in sea level - formally defined as

the vertical distance between the sea-surface equipotential and the solid surface - was expressed in

terms of viscoelastic surface load Love numbers (Peltier, 1974). Spatial (Peltier and Andrews, 1976)

and spectral (Mitrovica and Peltier, 1991) approaches were subsequently developed for solving the

sea-level equation, although the pseudo-spectral algorithm described by Mitrovica and Peltier (1991)

and later Kendall et al. (2005) has become the standard approach adopted in the ice-age sea-level

community.

Beginning in the late 1980s, a series of articles extended the sea-level theory to account for the

migration of shorelines associated with local onlap or offlap of water (Lambeck and Nakada, 1990;

Milne et al., 1999; Johnston, 1993; Peltier and Drummond, 2002) and changes in the perimeter of

grounded, marine-based ice (Milne et al., 1999). These studies applied various levels of approximation

to account for these effects; an exact treatment of both, valid for Earth models of arbitrary complexity,

was derived by Mitrovica and Milne (2003). More recent studies have begun to include the changing

surface loads of water stored on land, particularly in pro-glacial lakes that develop during ice sheet

retreat (Lambeck et al., 2017).

Changes in sea level associated with perturbations to Earth rotation have also been incorporated

into the sea-level equation (Han et al., 1989; Milne and Mitrovica, 1996, 1998; Bills and James, 1996;

Peltier, 1998; Mitrovica et al., 2005). There are two parts to any calculation of this effect: the perturba-

tion to Earth rotation driven by ice-age surface mass changes and the impact of this perturbation on sea

level. Mitrovica et al. (2005) demonstrated that earlier calculations of the former (e.g. Wu and Peltier,

1984) were characterized by a major inaccuracy associated with the treatment of the Earth’s equato-

rial bulge, and they provided a revised theory that resolved this issue. Kendall et al. (2005) provided
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algorithms for solving the generalized sea-level equation of Mitrovica and Milne (2003) appropriate

for rotating Earth models of arbitrary complexity.

There is an important, underlying assumption in all the above treatments, namely, that any loca-

tion where sea level is greater than zero - that is, where the solid surface lies below the sea-surface

equipotential - will be subject to water mass changes as ice sheets grow and diminish, even if the

location is not connected to the global ocean. For example, at present-day topography, low lying areas

such as Death Valley and inland seas like the Caspian Sea, would experience water influx to the level

of the evolving sea-surface equipotential if ice sheets melted. If such regions always remain discon-

nected from the global ocean, then a solution to this issue is straightforward: a mask can applied to

the topography that excludes these as accommodation space for meltwater across the glacial cycle.

However, this solution is not appropriate when a sill that connects the isolated water body to the ocean

can be breached. In that case, the regions on both sides of the sill would be subject to the full suite of

gravitational, deformation and rotational effects associated with surface mass load changes anywhere

on the globe, but would evolve as separate entities until the breach occurred.

A notable example of this scenario would be in the Black Sea, where the rise in global sea level

across the last deglacial phase led to a breach of the Bosphorus Sill and a connection of the sea to the

global ocean at ∼10 ka (Ryan et al., 2003). Ice-age sea-level calculations of the flooding event have

been performed (Lambeck et al., 2007; Goldberg et al., 2016); however, these studies adopted various

approximations to the sea-level theory such that the resulting solutions were not gravitationally self-

consistent. Other examples from the last deglacial phase include reflooding of the Caspian Sea (17-10

Ka) and the Persian Gulf (14-6 Ka)(Chepalyga, 2007; Teller et al., 2000; Lambeck, 1996). Evidence

for flooding in previous deglacials has also been identified in the English Channel, indicating outburst

flooding across the Dover Strait from a large meltwater lake (Gupta et al., 2007).

A complex situation occurred in the Mediterranean Sea during the Messinian Salinity Crisis from

5.96-5.33 Ma. During this period, the Mediterranean Sea was subject to numerous cycles of sea-level

drawdown and inundation, followed by a longer phase of complete isolation and desiccation, which

ended in a dramatic breaching of the Gibraltar and Sicily sills known as the Zanclean flood (e.g.

Clauzon et al., 1996; Gargani and Rigollet, 2007; Rohling et al., 2008; Roveri et al., 2014; Garcia-

Castellanos et al., 2009). The initial stage of cyclicity may have been a response to the competing

effects of erosion and tectonic uplift of the sill (Garcia-Castellanos and Villaseñor, 2011), sea-level

oscillations driven by variations in the size of the Antarctic Ice Sheet (Ohneiser et al., 2015), preces-

sionally forced variations in local climate (Krijgsman et al., 1999, 2001; Lugli et al., 2010) or some

combination of the three. An initial effort to apply ice-age sea-level theory to the cyclicity, based on an

approximate treatment of the water loading signal within the Mediterranean Sea, demonstrated that ne-
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4 Sophie Coulson

glecting gravitational and deformational effects associated with sea-level change in the Mediterranean

basins introduces significant inaccuracies in predictions of the magnitude and direction of sea-level

change at the Gibraltar Strait (Coulson et al., 2019).

In this article, we extend the generalized sea-level theory of Mitrovica and Milne (2003) to derive

a gravitationally self-consistent treatment of water redistribution in the case where a region charac-

terized by positive sea level (i.e., where the crust sits below the local sea-surface equipotential) is

subject to episodes of either connection or disconnection to the global ocean. The theory allows for

perturbations in sill height associated with local sea-level changes and is valid for Earth models of

arbitrary complexity. The theory also incorporates the possibility of evaporative mass transport across

the sill, which is of particular importance for studying the Mediterranean basins, where evaporation

rates dramatically exceed recharge rates. The next section outlines the extended sea-level theory. To

best illustrate the capabilities of this novel approach, a subsequent section presents calculations for

idealized lake-ocean systems, based on the Black Sea flooding and desiccation of the Mediterranean

Sea.

2 THEORY

Our sea-level formalism will involve three cases: one global ocean, a two water body system involving

an ocean and lake separated by an exposed sill, and transitional phases that occur between the single

and double water body states. For simplicity, we begin with a system with no shoreline migration,

that is, following the original assumption of Farrell and Clark (1976), we assume that shorelines are

characterized by steep vertical cliffs. A full theoretical and numerical implementation that incorporates

shoreline migration is given in Appendix A. In the following, we adopt the notation of Mitrovica and

Milne (2003) and Kendall et al. (2005).

2.1 One Water Body

Global sea level is formally defined as the elevation difference between the height of the sea-surface

equipotential (G) and the solid surface (R) (see Fig. 1):

SL(θ, ψ, t) = G(θ, ψ, t)−R(θ, ψ, t), (1)

where θ and ψ are colatitude and east longitude, respectively, and t is time. Sea level can be expressed

as a perturbation, ∆SL(θ, ψ, t), from an initial state at t = t0,

SL(θ, ψ, t) = SL(θ, ψ, t0) + ∆SL(θ, ψ, t) (2)
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Figure 1. Schematic illustration of the global ocean system. The bounding surfaces G and R, components of

sea level SL, G and φ/g, and the ocean function C are defined in the text (see Equations 1, 7 and 8). We refer

to these quantities both as totals, as perturbations from the initial state, ∆, and as changes across a single time

step, δ.

where

∆SL(θ, ψ, t) = ∆G(θ, ψ, t)−∆R(θ, ψ, t). (3)

In this system, topography is defined as the negative of sea level, i.e., the height of the solid surface

relative to the elevation of the sea-surface equipotential:

T (θ, ψ, t) = −SL(θ, ψ, t) = T (θ, ψ, t0) + ∆T (θ, ψ, t) = T (θ, ψ, t0)−∆SL(θ, ψ, t). (4)

A simple expression relates changes in ocean height to changes in global sea level:

∆S(θ, ψ, t) = ∆SL(θ, ψ, t)C(θ, ψ), (5)

where we have assumed that shoreline geometry is fixed in time. In this expression, C(θ, ψ) is the

ocean function defined as:

C(θ, ψ) =

1 over oceans, i.e., where SL(θ, ψ, t) > 0

0 elsewhere.
(6)

Following the ice-age literature, we next decompose ∆G(θ, ψ, t) in Equation (3), and thus the

sea-level change, ∆SL(θ, ψ, t), into a geographically variable part and a uniform shift ∆φ(t)/g. In
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particular,

∆SL(θ, ψ, t) = ∆SL(θ, ψ, t) +
∆φ(t)

g
, (7)

where

∆SL(θ, ψ, t) = ∆G(θ, ψ, t)−∆R(θ, ψ, t). (8)

∆G represents the spatially variable component of the perturbation to the height of the sea-surface

equipotential from its initial state. This decomposition recognizes that whilst the ocean surface must

remain an equipotential surface in a static sea-level theory, the value of the equipotential can change

in time. Using Equation (7), we can rewrite Equation (5) as

∆S(θ, ψ, t) =

[
∆SL(θ, ψ, t) +

∆φ(t)

g

]
C(θ, ψ). (9)

∆SL is computed as a response to the total surface mass load change, ∆L, which can be decomposed

into components associated with the water (∆S) and ice (∆I) load:

∆L(θ, ψ, t) = ρw∆S(θ, ψ, t) + ρi∆I(θ, ψ, t) (10)

where ρw and ρi are the densities of water and ice, respectively.

The uniform shift in the height of the sea-surface equipotential can be computed by invoking

conservation of the surface mass load. Integrating both sides of Equation (9) over the surface of the

Earth yields
∆φ(t)

g
=

1

A

∫∫
Ω

∆S(θ, ψ, t)− 1

A

∫∫
Ω

∆SL(θ, ψ, t)C(θ, ψ)dΩ, (11)

where A is the area of the ocean

A =

∫∫
Ω
C(θ, ψ)dΩ. (12)

Next, conservation of the surface mass load requires that∫∫
Ω

∆S(θ, ψ, t)dΩ = − ρi
ρw

∫∫
Ω

∆I(θ, ψ, t)dΩ, (13)

and using this expression in Equation (11) yields

∆φ(t)

g
= − 1

A

ρi
ρw

∫∫
Ω

∆I(θ, ψ, t)dΩ− 1

A

∫∫
Ω

∆SL(θ, ψ, t)C(θ, ψ)dΩ. (14)

Equations (6), (9) and (14) govern the redistribution of water associated with ice mass flux, i.e., the

”sea-level equation” for the system.

In considering an ocean and lake system which are intermittently connected, it will be more con-

venient - both in the derivation below and in the numerical implementation - to proceed not by con-

sidering changes in sea level from the start of the simulation, but rather across each time step in the
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simulation. A given simulation can include multiple switches from a one body to two body state, or

vice versa, with transitions between the two states occurring across a single time step, and thus up-

dates in the ocean load are more compactly expressed across individual time steps. Of course, a simple

relationship exists between changes in the ocean load as expressed above and changes across a single

time step. For example, for the jth time step,

∆S(θ, ψ, tj) = ∆S(θ, ψ, tj−1) + δS(θ, ψ, tj). (15)

Similar expressions can be written for other time-dependent quantities, e.g., ∆SL, ∆I , and ∆φ. In

this case, the sea-level equation for the jth time step is:

δS(θ, ψ, tj) =

[
δSL(θ, ψ, tj) +

δφ(tj)

g

]
C(θ, ψ), (16)

where

δSL(θ, ψ, t) = δSL(θ, ψ, t) +
δφ(t)

g
, (17)

and
δφ(tj)

g
= − 1

A

ρi
ρw

∫∫
Ω
δI(θ, ψ, tj)dΩ− 1

A

∫∫
Ω
δSL(θ, ψ, tj)C(θ, ψ)dΩ. (18)

All of the above expressions are general and make no assumption in regard to the Earth model. We

note that since the geographically variable component of sea-level change, ∆SL(θ, ψ, t) or δSL(θ, ψ, t),

is a function of the ocean load, Equations (9) and (16) are integral equations.

2.2 Two Isolated Water Bodies: Ocean & Lake

Next we consider the case of two isolated water bodies: a global ocean and lake separated by an

exposed sill (Fig. 2). We use subscripts ’o’ and ’m’ to differentiate the two. The sea-level equation

governing the redistribution of water in the global ocean is given by:

δSo(θ, ψ, tj) =

[
δSL(θ, ψ, tj) +

δφo(tj)

g

]
Co(θ, ψ), (19)

and the analogous expression governing the gravitationally self-consistent change in the water load

within the lake is

δSm(θ, ψ, tj) =

[
δSL(θ, ψ, tj) +

δφm(tj)

g

]
Cm(θ, ψ). (20)

The expressions for δSo and δSm are coupled through the geographically variable component of

the change in global sea level, δSL. This connection arises because the global sea-level change is

driven by the total surface mass load; so, for example, the loading history in the lake will impact sea
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Figure 2. Schematic illustration of the isolated lake and ocean system. The larger basin on the left represent

the global ocean, with the smaller basin on the right representing a disconnected lake. The bounding surfaces,

components of sea level, and the ocean functions are defined in the text. We refer to these quantities both as

totals, as perturbations from the initial state, ∆, and as changes across a single time step, δ.

level in the ocean, and vice versa. We note also that the sea-surface equipotential associated with the

ocean represents the bounding surface of sea level throughout the globe (Fig. 2). The surface of the

lake is also an equipotential, but if the lake is isolated from the ocean, the value of this equipotential

is distinct from the ocean surface equipotential, and the difference in the two gravitational potentials

is given by δφo(t)− δφm(t).

From Equations (19) and (20), each of the water bodies has its own projection operator, which we

may write as

Co(θ, ψ) =

1 within ocean

0 elsewhere
(21)

Cm(θ, ψ) =

1 within lake

0 elsewhere
(22)

The change in the surface mass load across the time step is given by:

δL(θ, ψ, tj) = ρw[δSo(θ, ψ, tj) + δSm(θ, ψ, tj)] + ρiδI(θ, ψ, tj). (23)

To derive expressions for δφo(tj) and δφm(tj), we integrate both sides of Equations (19) and (20),
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respectively, over the surface of the Earth. For the open ocean this yields

δφo(tj)

g

∫∫
Ω
Co(θ, ψ)dΩ =

∫∫
Ω
δSo(θ, ψ, tj)−

∫∫
Ω
δSL(θ, ψ, tj)Co(θ, ψ)dΩ. (24)

Assuming that the global reservoir of ice is in direct contact with the ocean not the lake, conservation

of the surface mass load requires that∫∫
Ω
δSo(θ, ψ, tj)dΩ = − ρi

ρw

∫∫
Ω
δI(θ, ψ, tj)dΩ + δE(tj), (25)

where the new term, δE(t), represents the prescribed volume of water transferred from the lake to the

open ocean during the time step by evaporation (the sign of the parameter will be negative if the net

mass flux is from the ocean to the lake). Using Equation (25) in (24) and solving for δφo(tj)/g yields

δφo(tj)

g
= − 1

Ao

ρi
ρw

∫∫
Ω
δI(θ, ψ, tj)dΩ +

δE(tj)

Ao
− 1

Ao

∫∫
Ω
δSL(θ, ψ, tj)Co(θ, ψ)dΩ, (26)

where

Ao =

∫∫
Ω
Co(θ, ψ)dΩ. (27)

The analogous expression for δφm(tj)/g is:

δφm(tj)

g
= −δE(tj)

Am
− 1

Am

∫∫
Ω
δSL(θ, ψ, tj)Cm(θ, ψ)dΩ (28)

where

Am =

∫∫
Ω
Cm(θ, ψ)dΩ. (29)

The coupled Equations (19), (20), (26) and (28), together with Equations (21) and (22), now govern

the redistribution of water associated with ice mass flux and evaporation from the lake to the open

ocean. As above, these changes across individual timesteps can be summed to give changes since the

start of the simulation (e.g. Equation 15).

As mentioned in Section 2.1, topography is defined as the negative of sea level (Equation 4), and

it evolves as we solve for sea level at each timestep. In the two water bodies case, within the maximum

lake extent, topography is calculated relative to the equipotential surface of the lake, i.e., a shoreline

of the lake will have zero topography. Elsewhere, topography is calculated relative to the equipotential

surface of the global ocean.

2.3 Transitional Phases

Whenever the global ocean surface at the location of the sill reaches the height of the sill, either from

above or below, the system enters a transitional phase in that time step. In the following, we discuss

the two cases, one in which the global ocean surface falls to the level of the sill in the single global

ocean case (Section 2.3.1), and one in which it rises to the level of the sill in the two water body
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case (Section 2.3.2). Note an additional transitional case exists where, in a two water body case, the

lake surface overtops the sill on the lake side, but the global ocean surface is below the sill on the

ocean side. This latter case may arise as a result of deformational, gravitational and rotational effects

associated with the changing surface mass load, and it can be treated using the same framework as

that described in Section 2.3.1 since the desired end state is also Tm(θs, ψs, t) = 0. The workflow of

the code, highlighting the various transitional phases, is given in Appendix B.

2.3.1 Falling Sea Level: Disconnecting the Lake and the Global Ocean

We begin by considering the scenario of a single water body (Fig. 1) with falling sea level (Fig. 3A).

In this case, as soon as the sill becomes exposed, the simulation transitions to the case of an isolated

ocean and lake system. However, once the sill is exposed, any further ice mass change will be sourced

from or fluxed to the ocean.

Beginning with the expressions for a single water body, the exposure of the sill is predicted to have

occurred following any time step tj in which sea level at the sill, T (θs, ψs, tj) (Equation 4), where θs

and ψs are the colatitude and longitude of the sill, is predicted to be positive. The calculation for that

time step must then be corrected; specifically, one must transfer sufficient water out of the ocean and

into the lake such that the lake level is pinned at the elevation of the sill (Fig. 3B). In the following,

we will use the symbol d to emphasize that we are dealing with a correction term at time tj to a time

step in the simulation that has already been taken (i.e., a time step from t = tj−1 to t = tj using the

equations governing a single water body).

The equations governing this correction during the transition are similar to those derived in Section

2.2, with the exception that the transfer of water from the ocean to the lake does not involve any

additional ice mass flux. The equations governing the redistribution of water are:

dSo(θ, ψ, tj) =

[
dSL(θ, ψ, tj) +

dφo(tj)

g

]
Co(θ, ψ), (30)

dSm(θ, ψ, tj) =

[
dSL(θ, ψ, tj) +

dφm(tj)

g

]
Cm(θ, ψ). (31)

The flux of mass across the sill can be accounted for by introducing a volume flux term, Λ(t), into

expressions analogous to Equations (26) and (28):

dφ(tj)

g
= −Λ(tj)

Ao
+− 1

Ao

∫∫
Ω
dSL(θ, ψ, tj)Co(θ, ψ)dΩ (32)

dφm(tj)

g
=

Λ(tj)

Am
− 1

Am

∫∫
Ω
dSL(θ, ψ, tj)Cm(θ, ψ)dΩ. (33)

The flux of water necessary to fill the lake to the level of the sill is not known a-priori, but it can be

efficiently solved for iteratively. A reasonable first guess (k = 1) for the volume flux across the sill
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Ice

IceA)

B)

Λ(t)

Figure 3. Schematic illustration of the transition from a global ocean to an isolated lake and ocean

would be the uniform amount that would fill the lake, transferred from the global ocean (as illustrated

in Figure 3):

Λ(tj)
k=1 = T ∗(θs, ψs, tj) ·Am, (34)

where T ∗(θs, ψs, tj) is the topography at the sill computed at t = tj for the one water body case, i.e.,

before any correction is applied to transfer water from the ocean to the lake. Successive improvements

to this first guess for the volume flux across the sill are based on the computed topography on the lake
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12 Sophie Coulson

side of the sill, Tm(θs, ψs, tj). Recalling that the change in topography is the negative of the change

in sea level (e.g., Equation 4), sill topography during the iterative refinement can be written as:

T ko (θs, ψs, tj) = T ∗(θs, ψs, tj)−
[
dSLk(θs, ψs, tj) +

dφko(tj)

g

]
, (35)

T km(θs, ψs, tj) = T ∗(θs, ψs, tj)−
[
dSLk(θs, ψs, tj) +

dφkm(tj)

g

]
. (36)

Whenever T km(θs, ψs, tj) is positive, more water must be transferred from the ocean to the lake,

whereas if it is negative, the transfer is from lake to ocean. Accordingly, we can write

Λ(tj)
k+1 = Λ(tj)

k + T km(θs, ψs, t) ·Am, (37)

and the process is repeated until the system of equations yields T km(θs, ψs, t) = 0 to within a specified

tolerance.

After convergence (k = ∞), the total shift in water heights during the time step tj of the simula-

tion, required for the next time step, is given by:

δSo(θ, ψ, tj) = δS∗(θ, ψ, tj) + dSk=∞
o (θ, ψ, t) (38)

δSm(θ, ψ, tj) = δS∗(θ, ψ, tj) + dSk=∞
m (θ, ψ, t) (39)

We emphasize that at the end of the time step (t = tj), the system is in a two body state, and one

moves to the next time step using the equations described in Section 2.2.

2.3.2 Rising Sea Level: Connecting the Lake to the Global Ocean

Next, we consider the case of an initially isolated lake and ocean (Fig. 2), in which rising sea level in

the global ocean, local to the sill, leads to a breach of the sill (Fig. 4A). In the time-varying evolution

of the isolated ocean and lake simulation, if at any time step the topography on the ocean side of the

sill, To(θs, ψs, t) changes sign from positive to negative, then water fluxes from the ocean to the lake.

In this case, one of two scenarios will occur: (1) if the volume of excess water in the open ocean is

sufficient to raise the lake level above the sill, the system will evolve into a one body state (Fig. 4C)

and a single gravitational equipotential will define the water surface; (2) if the volume of excess water

in the open ocean is not sufficient to fill the lake to the level of the sill, a flux of water from ocean to

lake will occur until the ocean surface reaches the same height as the the sill, i.e., To(θs, ψs, t) = 0

(Fig. 4B).

As in the first transitional state, above, the volume flux across the sill is not known a-priori but

can be efficiently solved for iteratively. In both of the cases discussed in the preceeding paragraph,
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Melt Water

E(t)

Melt Water

Melt Water

A)

B)

C)

E(t)

Λ(t)

E(t)

Λ(t)

Figure 4. Schematic illustration of the transition from an isolated lake and ocean to a global ocean

the scheme defined by Equations (30) to (33) in Section 2.3.1, can be applied, but the scheme for

iteratively improving a guess for the volume flux across the sill, Λ(t), will be revised. Let us begin

with the first case.

If the volume of excess water in the open ocean is large enough to raise the surface of the lake

above the sill, a reasonable first guess for the volume flux across the time step would be:

Λ(tj)
k=1 = − [T ∗o (θs, ψs, tj)− T ∗m(θs, ψs, tj)] ·Ao

A
·Am (40)
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14 Sophie Coulson

where, the asterisk now denotes a topography computed at the time step t = tj under the assumption

that the system was in a two body state before a correction is applied to transfer water from the ocean

to lake. Physically, one is taking a uniform layer of thickness equal to the difference in height of the

ocean and lake surfaces at the sill, (T ∗o (θs, ψs, tj)− T ∗m(θs, ψs, tj)), and distributing it equally across

all of the new ocean area (A = Ao + Am). As in Section 2.3.1, if this value was too high (i.e., the

sea surface height in the lake becomes higher than that in the open ocean, or Tm(θs, ψs, t) is more

negative than To(θs, ψs, t)), water should be transferred from the lake to the ocean, and if it was too

low, more water should be transferred from ocean to lake. The second iterate for Λ(t) therefore takes

the form:

Λ(tj)
k+1 = Λ(tj)

k − [T ko (θs, ψs, tj)− T km(θs, ψs, tj)] ·Ao
A

·Am (41)

The process is repeated until the topography on both sides of the sill become equal to within some

tolerance, i.e., Tm(θs, ψs, t) ≈ To(θs, ψs, t). Inherent to the formulation, once this convergence is

achieved the sea surface equipotentials of the lake and ocean also become equal (φog ≈
φm
g ). At con-

vergence, one moves to the next time step in the sea-level theory using the equations governing the

single global ocean, described in Section 2.1.

If the volume of excess water in the open ocean is not large enough to fill the water deficit in the

lake, a reasonable first guess for the volume flux across the time step would be simply the volume of

excess water

Λ(tj)
k=1 = −T ∗o (θs, ψs, tj) ·Ao, (42)

with subsequent guesses following the form:

Λ(tj)
k+1 = Λ(tj)

k − T ko (θs, ψs, tj) ·Ao. (43)

Convergence is reached when the ocean surface reaches the sill height within some level of tolerance,

i.e., To(θs, ψs, t) ≈ 0.

This transfer of mass in the correction procedure will generally act as a net load on the sill, since

the rise in the height of the lake will be of greater magnitude than the drop in the level of the ocean,

and the mass flux to the lake will also gravitationally attract water toward the sill. Both effects will

lead to an increase in height of the ocean surface relative to the sill and a further, incremental breach

of the sill. It is therefore to be expected that the incremental volume flux from ocean to lake will be

positive in each iterative step.

After convergence of the iterative system of Equations (30)-(33), the total shift in water heights
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An Extended Ice-Age Sea-Level Equation: Incorporating Water Flux Across Sills 15

during the time step tj of the simulation, required for the next time step, is given by Equations (38)-

(39). We emphasize that at t = tj , the system is in a two body state.

3 SOME COMMENTS ON APPLYING THE NEW THEORY

The derivations above, and the more comprehensive ones that include shoreline migration in Appendix

A, implicitly assume that a method exists for computing the geographically variable sea-level change,

∆SL(θ, ψ, t) or δSL(θ, ψ, t), driven by arbitrary changes in the surface mass loading. In the case

of 1-D linear viscoelastic Earth models, viscoelastic Love number theory (Peltier, 1974) can be used

to derive expressions for these fields; we direct the reader to Kendall et al. (2005) for expressions

that incorporate deformation, gravitational and rotational effects on sea level. For more complex Earth

models and rheology, numerical schemes must be adopted to solve for them (e.g. Wu and van der Wal,

2003; Zhong et al., 2003; Latychev et al., 2005).

4 ILLUSTRATIVE EXAMPLES FOR IDEALIZED OCEAN-LAKE SYSTEMS

In this section we illustrate the flexibility of the new sea-level theory with idealized examples taken

from the flooding history of the Mediterranean and the Black Seas. The simulations adopt a 1-D

viscoelastic Earth model characterized by an elastic lithosphere of thickness 120 km, an upper mantle

viscosity of 5× 1020 Pa s, and a lower mantle viscosity of 5× 1021 Pa s. Although all the predictions

below include rotational effects on sea level, the physics at the sill is dominated by deformational and

gravitational effects and thus we focus on the latter in the discussion below.

The complex network of basins in the Mediterranean region, combined with its diverse sea-level

history provide an ideal setting in which to apply the sea-level theory described above. In addition to

experiencing sea-level fluctuations due to the ice-age cycles of the Plio-Pleistocene, the Mediterranean

region has also experienced sea-level fall due to its uniquely high evaporation rate. The evaporation

rate exceeds precipitation and recharge, generating conditions which have led to the disconnection of

seas in different basins and protracted periods of isolation from the open ocean.

The most remarkable example of limited connectivity between the Mediterranean Sea and the

global ocean occurred during the Messinian Salinity Crisis (MSC, 5.96 Ma). The events of the MSC

can be separated into two chronologically distinct stages (Clauzon et al., 1996). The first stage con-

sisted of low amplitude fluctuations in Mediterranean sea level, which have been attributed to a variety

of processes, including precessionally forced variations in local climate (Krijgsman et al., 1999, 2001;

Lugli et al., 2010), the interplay between tectonic uplift and erosion at the Gibraltar sill (Garcia-

Castellanos and Villaseñor, 2011), and variations in global sea level (Ohneiser et al., 2015). In the
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16 Sophie Coulson

second stage of the MSC, the Mediterannean was completely disconnected from the Atlantic Ocean

and experienced a significant sea-level fall (Bache et al., 2015; Clauzon et al., 1996; Krijgsman et al.,

1999), followed by dramatic reflooding of the Mediterranean basins, known as the Zanclean flood

(Garcia-Castellanos et al., 2009; Periáñez and Abril, 2015).

Given the considerable controversy and uncertainty associated with both the timing and magnitude

of each of these events, as a simple first example, we apply the new sea-level framework to consider

a sinusoidal fluctuation in global sea level of magnitude 100 m driven by far field ice mass changes

acting on modern day topography (Fig. 5). A sea-level fall of this magnitude is sufficient to expose

the sill at the Gibraltar seaway (set to an initial depth of 60 m), thus isolating the Mediterranean ’lake’

and pushing the system into a two water body state. Once the Mediterranean Sea has become isolated,

it is subject to evaporative flux, representing the combined effect of evaporation, river run-off and

precipitation. Here we choose a value of 0.4 m/yr for evaporative flux, in line with estimates for the

Messinian period (Gladstone et al., 2007). As sea level in the open ocean rises again to the level of the

Gibraltar sill, the sill is overtopped in a catastrophic flood and the system transitions back to the one

water body state.

Fig. 6 shows the evolution of topography at several snapshots in time. When the system is in a two

body state, topography within the maximum extent of the Mediterranean ’lake’ is calculated relative

to local sea surface height in the Mediterranean, as described in Section 2.2 (this is highlighted in

Fig. 6B, with maximum ’lake’ extent outlined in black and zero ’lake’ topography highlighted in

red). In the first 2300 years of the model run, while in the one water body state, the whole system

evolves together with one global sea surface equipotential (Figs. 5 and 6A). After the Mediterranean

has become isolated, we see a significant sea-level fall in the lake due to evaporative flux, shown in

Figs. 5B and 6B. During this period, the system experiences gravitational and deformational changes

in sea level associated with both the flux of water from the global ocean to the ice sheets, and from

Mediterranean evaporation to the global ocean. The latter dominates the sea-level physics at the sill.

That is, as water is removed from the Mediterranean basin, the crust at the sill will rebound due to

the reduction in local surface mass loading, and the sea surface height of the sill will drop due to the

reduction in the gravitational attraction exerted by the Mediterranean water load on the global ocean.

These effects will combine to further expose the Gibraltar sill, prolonging the period of isolation, and

increasing the total sea-level fall. In this scenario, the peak sea-level fall in the Mediterranean reaches

∼2100 m over the 6000 year period of isolation (Fig. 6B). Interestingly, at the peak sea-level fall, the

Mediterranean ’lake’ is split into two water bodies by the Sicily Sill becoming exposed. Our present

formulation treats these two bodies as one, but could, in principle, be extended to incorporate a larger
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Figure 5. Sea level at the Gibraltar sill for a sinusoidal fluctuation in global sea level of 100 m. a) Global mean

average height of water removed from the global ocean through time. b) Sea level on both the Atlantic Ocean

side and the Mediterranean Sea side of the Gibraltar sill. c) Number of isolated water bodies present in the

system.

number of water bodies to more accurately predict sea-level change in the individual Eastern and

Western Mediterranean basins.

At the 5000 year point of the simulation, ice begins to melt and water starts to flux back into the

ocean (Fig. 5A), and flooding of the Mediterranean begins ∼3400 years later (Figs. 5B, 6C). During

the flooding stage, the physics described above reverses: as water moves across the sill from the open

ocean to the Mediterranean Sea, the increased local mass load acts to depress the crust at the sill and

its gravitational pull raises the height of the sea surface equipotential in the same area. Both of these

effects increase sea level (lower topography) at the sill, producing a positive feedback, and leading

to a run-away flood that occurs within one (100 yr) timestep of the simulation. A detailed view of

the evolution of topography of the region through time is provided in Video 1 in the supplementary

material.

A more recent example of dramatic sea-level change in the Mediterranean region occurred during

the reflooding of the Black Sea during the last deglaciation phase of the ice age. At the Last Glacial
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A)

B)

C)

Figure 6. Evolution of topography for a sinusoidal fluctuation in global mean sea level of 100 m. Topography is

shown a) 2000 years, b) 8000 years and c) 9000 years from the start of the simulation. The red star provides the

location of the Gibraltar sill. Zero topography is highlighted in black while the Mediterranean Sea is connected

to the global ocean, and in black and red for the global ocean and Mediterranean Sea, respectively, when the two

water bodies are isolated from one another. While the two water bodies are isolated, the maximum extent of the

Mediterranean lake is outlined in black. Note, the Black Sea is masked out for the purpose of this illustration.

Maximum (LGM), 26 ka, local sea level was significantly below the Marmara and Bosphorus Straits,

breaking the connection between the Black Sea and the global ocean, and transforming the Black Sea

into a freshwater or brackish lake fed by rivers and glacial melt water (Yanko-Hombach et al., 2014).

As the ice sheets retreated and water rose in the Mediterranean, eventually the sills were breached,

leading to an inflow of seawater into the Black Sea basin.

Despite significant stratigraphic and palaeontological evidence associated with this flooding event,

the nature of Black Sea flood remains uncertain. The magnitude of the flood is primarily controlled by

the pre-flood water height in the Black Sea basin, and estimates range from∼ 100 m below present sea

level (Ryan et al., 2003; Lericolais et al., 2010; Nicholas et al., 2011) to only 30-40 m below present sea

level (Yanko-Hombach et al., 2014; Giosan et al., 2009). In contrast, rather than a catastrophic flooding
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Figure 7. Sea level at the Bosphorus sill for ice sheet retreat beginning at 26 ka, as prescribed by the ICE-6G-

C model (Peltier et al., 2015), and beginning with an isolated Black Sea basin. a) Global mean sea level rise

through time. b) Sea level on both the Mediterranean Sea and Black Sea sides of the Bosphorus sill.

event, some studies argue that the reconnection between the two water bodies was characterized by

a more gradual influx of water to the Black Sea (e.g. Aksu et al., 2002a). This theory is supported

by seismic profiles and paleotonological data that suggest continual outflow from Black Sea to the

Mediterranean Sea (Aksu et al., 2002b; Ferguson et al., 2018; Hiscott et al., 2002), implying that the

surface of the Black Sea remained at, or close to, the elevation of the sill. The timing of reconnection

is also controversial. Based on evidence from stratigraphy and various paleontological proxies from

sediment cores, the flooding event has been dated from 12.8-7.1 Ka (Ryan et al., 1997; Major et al.,

2002; Soulet et al., 2011; Yanko-Hombach et al., 2014). Geophysical modeling efforts are unable

to reduce this range given uncertainties in both the height of the sill during the flood event and the

pre-flood height of the isolated Black Sea (Goldberg et al., 2016).

Here we simulate a maximum flooding scenario for the Black Sea summarized in Fig. 7. From

LGM to present, global mean sea level rose ∼130 m. The Bosphorus sill at LGM is prescribed to be

90 m above the surface of the Mediterannean Sea and 100 m above the level of the Black Sea. From

this time to the present-day, our ice sheet history adopts the ICE-6G-C model (Peltier et al., 2015). The
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A)

C)

B)

D)

Figure 8. Computed change in topography relative to the start of the simulation, driven by ice sheet retreat

and associated sea-level change since the Last Glacial Maximum. Snapshots show topography change a) at 15

ka, b) 11 ka, c) 9.5 ka and d) 5 ka. The red star gives the coordinates defining the Bosphorus sill. Zero initial

topography is highlighted in black.

change in topography in the region relative to the start of the simulation for time slices encompassing

the flood event in Fig. 8.

From 26 to 10 ka, the model is in a two water body state with evaporative flux set to zero. Thus,

there is no water flux between the Black Sea and the global ocean, and the predicted (geographically

variable) change in topography in Fig. 8A and B is simply the result of water moving from ice sheets

into the global ocean, and the deformational and gravitational effects associated with this load change.

At 9.5 ka, the sea surface on the Mediterranean side of the Bosphorus sill rises above the sill height,

so water begins to overtop the sill. In this transitional phase the Black Sea floods, that is, topography

subsides as the system evolves into a one water body state with a single sea-surface equipotential. At

this stage, the simulation captures the sea-level change associated with both the melting of ice, and

water flux into the Black Sea basin. The latter drives deformational and gravitational effects that act as

a positive feedback on flooding, and the inundation of the Black Sea is completed within one time step

of the simulation (Fig. 8C). Beyond this time, continued melting, water flux into both the Mediter-

ranean and Black Sea, and ongoing isostatic adjustments drive further changes in the topography. A

detailed view of how topography evolves through the duration of this model is given in Video 2 in the

supplementary material.

To quantify the improvement in predictions generated using the theoretical treatment described

above relative to previous studies, we compare results for a simplified flooding scenario for the
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Mediterranean Sea (Figures 5, 6B and C) to the approximation in Coulson et al. (2019), based on

applying the original sea-level theory of Mitrovica and Milne (2003). Figure C.1 shows various sea

level predictions at the Gibraltar Sill through time for a scenario in which ice melting in the global

ocean raises the sea surface 5 cm above the sill, thus initiating flooding. The solid black line on the

figure represents the result of applying the new, extended sea level theory described in this article.

This application ultimately leads to a complete filling of the Mediterranean ocean basin. The Coulson

et al. (2019) treatment requires a predetermined flood volume and geometry. Specifically, a volume of

water equal to the excess volume overtopping the sill in the global ocean is transferred as a uniform

layer into the Mediterranean and no further flooding, or redistribution of flood water, is considered.

In this case, adopting the approximation leads to a gross underestimation of the volume of water en-

tering the Mediterranean Sea relative to the new theory and a prediction of only minor sea-level rise

at the Gibraltar sill (red dash-dot line in Figure C.1). In an effort to improve the accuracy of this ap-

proximate treatment, we once again prescribe the volume and geometry of the flood, but using insight

gained from our extended theory, we assume a water load precisely equal to the volume and geom-

etry of the initial (unflooded) Mediterranean (shown in dashed blue). Once again, no redistribution

of floodwater or further flooding is considered. This yields a prediction with an error of order 10%

at the Gibraltar Sill. This error arises due to the neglect of both the additional volume of water that

flows into the Mediterranean ocean basin, and the redistribution of water in the Mediterranean as the

crust deforms and the sea surface equipotential evolves; both processes are captured using the new,

gravitationally self-consistent treatment. We have also performed tests for the case of an emptying

Mediterranean Sea with an evaporation rate of 4 m/yr, comparing removal of water according to the

changing gravitational equipotential (in the extend theory) with removal of uniform sheets of water

defined by the initial bathymetry of the Mediterranean Sea (Coulson et al., 2019). This yields inaccu-

racies on order of 10% at the Gibraltar sill from the beginning of the simulation. In both Coulson et al.

(2019) and Goldberg et al. (2016), volume changes due to sill breach and/or evaporation, as well as

their timing, are treated as known a priori, and volume changes are relatively small, thus these errors

are mitigated.

5 FINAL REMARKS

The importance of including isostatic adjustment and gravitational effects associated with water redis-

tribution to and from isolated basins in calculations of local sea-level change has been demonstrated

in the literature, particularly in the Mediterranean region. Govers (2009) and Govers et al. (2009),

for example, estimated the uplift associated with a large sea-level fall in the Mediterranean Sea, while

Coulson et al. (2019) extended this to also include gravitational effects associated with mass flux in and
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out of the Mediterranean Sea and focused on quantifying the impact of these effects on the dynamics

of the Gibraltar sill. Lambeck et al. (2007) and Goldberg et al. (2016) used ice-age sea-level models to

explore the timing and location of sill breach in the Black Sea flood, but neither study included a fully

gravitationally self-consistent treatment of the flood event. Clark et al. (1990) predict uplift across the

Great Lakes during the last deglaciation. To do so, they track individual elevation curves for potential

lake outlets and calculate the location of the lowest ice-free outlet to infer drainage history. Their ap-

proach used a simplified sea-level model and does not account for load changes generated by water

flowing through and out of the lake system. Clark et al. (2007) and Lambeck et al. (2017) developed

algorithms to deal with scenarios in which water draining from an ice sheet enters a pro-glacial lake

on land (or on ice), rather than immediately draining to the global ocean. Their methods ensure con-

servation of the surface mass load, but do not separately track the varying gravitational equipotential

for each lake.

We provide the first complete gravitationally self-consistent sea-level theory that incorporates

mass transfer both between ice sheets and the global ocean, and the global ocean and an intermit-

tently disconnected and connected lake. Our framework extends the generalized sea-level theory of

Mitrovica and Milne (2003) to capture the evolution of a one body (global ocean) system, a two body

(ocean-plus-lake) system, and transitions in both directions between these two end states. The theory

allows all deformational, gravitational and rotational effects of the surface mass loading of an arbitrary

viscoelastic planet to be accounted for via a term describing change in sea level over time. For 1-D

viscoelastic Earth models, this term can be expressed and computed using Love number theory, while

for more complex Earth models a range of higher level computational methods have been developed

in the ice-age sea-level literature to calculate it. The sea-level equations we have derived also account

for evaporative mass transport across the sill during periods when the system is in a two water body

state. The timing of the flooding of the lake, or its isolation from the open ocean, are governed entirely

by the evolving system - the timing of these events is not prescribed. That is, once initial topographies,

Earth model, ice history and evaporative transport are prescribed, these events occur when the evolving

system predicts that the ocean surface reaches the sill height from below or above, respectively.

In a final section we present calculations for idealized ocean-lake systems that demonstrate the

importance of including geographically variable sea-level changes in the filling or emptying of an

isolated basin, particularly at the location of the sill (see also Coulson et al. (2019)). In these scenarios,

geophysical processes associated with sea-level fall within an isolated basin act as a positive feedback,

reducing sea level further at the sill and extending the period of isolation. The same is true in the case

of sill overtopping and lake flooding: in this case, positive feedbacks act to escalate flooding. In fact,

in both the Black Sea and Mediterranean test cases, we found that once flooding begins, the positive
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feedbacks associated with crustal subsidence and increased gravitational attraction toward the lake

lead to complete basin refilling within one time step of the simulations. These results indicate that the

time scale of flooding will, in many cases, be limited only by the efficiency of water flux across the

sill, rather than by water availability.
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(2002b). Last glacial–holocene paleoceanography of the black sea and marmara sea: stable isotopic,

foraminiferal and coccolith evidence. Marine Geology, 190(1-2):119–149.

Bache, F., Gargani, J., Suc, J.-P., Gorini, C., Rabineau, M., Popescu, S.-M., Leroux, E., Do Couto,

D., Jouannic, G., Rubino, J.-L., et al. (2015). Messinian evaporite deposition during sea level rise

in the gulf of lions (western mediterranean). Marine and Petroleum Geology, 66:262–277.

Bills, B. G. and James, T. S. (1996). Late quaternary variations in relative sea level due to glacial

cycle polar wander. Geophysical Research Letters, 23(21):3023–3026.

Chepalyga, A. L. (2007). The late glacial great flood in the ponto-caspian basin. In The Black Sea

Flood Question: Changes in Coastline, Climate, and Human Settlement, pages 119–148. Springer.

Clark, J. A., Pranger, H. S., Walsh, J. K., and Primus, J. A. (1990). A numerical model of glacial

isostasy in the lake michigan basin. Late quaternary history of the Lake Michigan Basin, 251:111–

123.

Clark, J. A., Zylstra, D. J., and Befus, K. M. (2007). Effects of great lakes water loading upon glacial

isostatic adjustment and lake history. Journal of Great Lakes Research, 33(3):627–641.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/advance-article/doi/10.1093/gji/ggaa596/6043206 by U

niversity of C
am

bridge user on 23 D
ecem

ber 2020



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

24 Sophie Coulson

Clauzon, G., Suc, J.-P., Gautier, F., Berger, A., and Loutre, M.-F. (1996). Alternate interpretation of

the messinian salinity crisis: Controversy resolved? Geology, 24(4):363–366.

Coulson, S., Pico, T., Austermann, J., Powell, E., Moucha, R., and Mitrovica, J. X. (2019). The role

of isostatic adjustment and gravitational effects on the dynamics of the messinian salinity crisis.

Earth and Planetary Science Letters, 525:115760.

Farrell, W. and Clark, J. A. (1976). On postglacial sea level. Geophysical Journal International,

46(3):647–667.

Ferguson, S., Warny, S., Escarguel, G., and Mudie, P. J. (2018). Mis 5–1 dinoflagellate cyst analyses

and morphometric evaluation of galeacysta etrusca and spiniferites cruciformis in southwestern

black sea. Quaternary International, 465:117–129.
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APPENDIX A: IMPLEMENTATION INCLUDING SHORELINE MIGRATION

In the following, we generalize the treatment in the main text to present ’sea-level equations’ incor-

porating shoreline migration for both the case of one water body and two isolated water bodies. For

the sake of brevity, in the following equations the dependence of various fields on colatitude and east

longitude is implicit. We also use a subscript j to denote the time t = tj or the jth time step ending at

t = tj .

A1 One Water Body

The sea-level equation valid for a single water body (i.e., global ocean) and time varying shoreline

geometry was presented by Mitrovica and Milne (2003). Their expressions involved changes in sea

level from the beginning of the simulation. However, as discussed in the main text, it is desirable in

the present application to express all equations in terms of the change across a single time step. In this

case, we derive the following, exact expression for the change in ocean height,

δSj = δSLjCj − Tj−1[Cj − Cj−1]. (A.1)

Combining this expression with Equation 17 yields

δSj =

[
δSLj +

δΦj

g

]
Cj − Tj−1[Cj − Cj−1]. (A.2)

The jth increment to the uniform shift in the height of the sea-surface equipotential can be computed

by invoking conservation of mass. Integrating both sides of equation A.2 over the surface of the Earth,

gives

δΦj

g
=

1

Aj

∫∫
Ω
δSjdΩ− 1

Aj

∫∫
Ω
δSLjCjdΩ +

1

Aj

∫∫
Ω
Tj−1[Cj − Cj−1]dΩ (A.3)

where

Aj =

∫∫
Ω
CjdΩ. (A.4)

Conservation of mass requires that∫∫
Ω
δSjdΩ = − ρi

ρw

∫∫
Ω
δIjdΩ, (A.5)

and combining this with Equation A.3 yields

δΦj

g
= − 1

Aj

ρi
ρw

∫∫
Ω
δIjdΩ− 1

Aj

∫∫
Ω
δSLjCjdΩ +

1

Aj

∫∫
Ω
Tj−1[Cj − Cj−1]dΩ. (A.6)

Equations (A.2), (A.4) and (A.6) represent the sea-level equation for the single water body case allow-

ing for shoreline migration.
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A2 Two Isolated Water Bodies: Ocean & Lake

Expressions analogous to Equations (A.2), (A.4) and (A.6) for the two water body system are as

follows. For the open ocean:

δSo,j =

[
δSLj +

δΦo,j

g

]
Co,j − Tj−1[Co,j − Co,j−1] (A.7)

δΦo,j

g
=− 1

Ao,j

ρi
ρw

∫∫
Ω
δIjdΩ +

δE(tj)

Ao
− 1

Ao,j

∫∫
Ω
δSLjCo,jdΩ

+
1

Ao,j

∫∫
Ω
Tj−1[Co,j − Co,j−1]dΩ

(A.8)

where

Ao,j =

∫∫
Ω
Co,jdΩ. (A.9)

For the lake:

δSm,j =

[
δSLj +

δΦm,j

g

]
Cm,j − Tj−1[Cm,j − Cm,j−1] (A.10)

δΦm,j

g
= −δE(tj)

Am,j
− 1

Am,j

∫∫
Ω
δSLjCm,jdΩ +

1

Am,j

∫∫
Ω
Tj−1[Cm,j − Cm,j−1]dΩ (A.11)

where

Am,j =

∫∫
Ω
Cm,jdΩ. (A.12)

As in Section 2.2, all melt water from ice sheets enters the open ocean, rather than the lake, and

evaporative flux acts to remove water from the lake an add it to the open ocean.

Finally, the combined incremental ocean height change for the whole Earth is calculated as the

sum of that for the open ocean and for the lake, to solve for the change in sea level.

δSj = δSo,j + δSm,j (A.13)
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APPENDIX B: TRANSITIONS

One Ocean Case

Ocean and Lake Case

Is the sill below the 
water surface?

Yes

Exit Iteration

No Transition to 
Two Ocean Case

Move water from ocean to lake

Is lake level at sill?

No

Exit Iteration

Yes

Is the sill above the 
water surface?

No

Exit Iteration

Yes

Is the lake level above the sill
 and the ocean level below?

Or
Is the ocean level above the sill?

Is the excess volume of water
 enought to �ll the lake?

Move water from 
lake to ocean

Is lake level at sill?

No

Exit Iteration

Yes

NoYes

Move all ocean water 
above sill into lake

Transition to 
One Ocean Case

Redistribute excess water so lake 
and ocean are at the same level

Are they at the same level?

No Yes

Exit Iteration

Has the lake over�owed?

Yes No

Is the ocean level at the sill?

Yes No

Exit Iteration

Figure B.1. Flowchart giving qualitative description of transitional phases. The two primary cases, described

in the main text in Sections 2.1 and 2.2 are given in blue. The main transitions, described in Sections 2.3.1 and

2.3.2 are given in bold purple.
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APPENDIX C: COMPARISON TO APPROXIMATE TREATMENTS
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Figure C.1. Evolution of sea level at the Gibraltar Sill generated following a breach of the sill specifically, a

scenario in which ice melt into the global ocean elevates local sea level to 5 cm above the Gibraltar sill (before

water is allowed to enter the Mediterranean). The solid black line shows the sea-level rise predicted by the

extended sea-level theory. In this case, the initial flux of water in the Mediterranean leads to a positive feedback

(see Section 4 of the main text) that fills the Mediterranean ocean basin. The dashed lines give results based

on two approximate treatments of flooding which require that the flood volume and geometry be prescribed

a-priori. The first calculation (red dash-dot line) assumes a uniform filling that follows the geometry of the

initial Mediterranean topography, with a volume equal to the excess volume overtopping the sill in the global

ocean. This assumption follows the approach of Coulson et al. (2019) and it involves no additional flooding

of the Mediterranean beyond the initial prescribed volume, and no redistribution of flood water within the

Mediterranean. In the second treatment (blue dashed line), the prescribed flood is given by the volume and

geometry defined by the initial empty Mediterranean topography. Once again, no additional flooding or flood

water redistribution occurs within the Mediterranean.
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