4,736 research outputs found

    Role of interference in quantum state transfer through spin chains

    Full text link
    We examine the role that interference plays in quantum state transfer through several types of finite spin chains, including chains with isotropic Heisenberg interaction between nearest neighbors, chains with reduced coupling constants to the spins at the end of the chain, and chains with anisotropic coupling constants. We evaluate quantitatively both the interference corresponding to the propagation of the entire chain, and the interference in the effective propagation of the first and last spins only, treating the rest of the chain as black box. We show that perfect quantum state transfer is possible without quantum interference, and provide evidence that the spin chains examined realize interference-free quantum state transfer to a good approximation.Comment: 10 figure

    Spin Star as Switch for Quantum Networks

    Full text link
    Quantum state transfer is an important task in quantum information processing. It is known that one can engineer the couplings of a one-dimensional spin chain to achieve the goal of perfect state transfer. To leverage the value of these spin chains, a spin star is potentially useful for connecting different parts of a quantum network. In this work, we extend the spin-chain engineering problem to the problems with a topology of a star network. We show that a permanently coupled spin star can function as a network switch for transferring quantum states selectively from one node to another by varying the local potentials only. Together with one-dimensional chains, this result allows applications of quantum state transfer be applied to more general quantum networks.Comment: 10 pages, 2 figur

    Quantum Communication through Spin Chain Dynamics: an Introductory Overview

    Full text link
    We present an introductory overview of the use of spin chains as quantum wires, which has recently developed into a topic of lively interest. The principal motivation is in connecting quantum registers without resorting to optics. A spin chain is a permanently coupled 1D system of spins. When one places a quantum state on one end of it, the state will be dynamically transmitted to the other end with some efficiency if the spins are coupled by an exchange interaction. No external modulations or measurements on the body of the chain, except perhaps at the very ends, is required for this purpose. For the simplest (uniformly coupled) chain and the simplest encoding (single qubit encoding), however, dispersion reduces the quality of transfer. We present a variety of alternatives proposed by various groups to achieve perfect quantum state transfer through spin chains. We conclude with a brief discussion of the various directions in which the topic is developing.Comment: Material covered till Dec 200

    Cooling, Storage, and Transporation of Milk and Cream

    Get PDF
    The care given milk and milk products should be such that they will be relished by young and old alike. Greater use of milk can be encouraged by serving fresh milk cold. Cooling of milk also insures a fine product several hours after production. This is important not only for milk that is to be used, but for milk or cream that is to be sold

    The Submillimeter Array

    Full text link
    The Submillimeter Array (SMA), a collaborative project of the Smithsonian Astrophysical Observatory (SAO) and the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA), has begun operation on Mauna Kea in Hawaii. A total of eight 6-m telescopes comprise the array, which will cover the frequency range of 180-900 GHz. All eight telescopes have been deployed and are operational. First scientific results utilizing the three receiver bands at 230, 345, and 690 GHz have been obtained and are presented in the accompanying papers.Comment: 10 pages, 4 figure

    Methyl bromide: Ocean sources, ocean sinks, and climate sensitivity

    Get PDF
    The oceans play an important role in the geochemical cycle of methyl bromide (CH_3Br), the major carrier of O_3-destroying bromine to the stratosphere. The quantity of CH_3Br produced annually in seawater is comparable to the amount entering the atmosphere each year from natural and anthropogenic sources. The production mechanism is unknown but may be biological. Most of this CH_3Br is consumed in situ by hydrolysis or reaction with chloride. The size of the fraction which escapes to the atmosphere is poorly constrained; measurements in seawater and the atmosphere have been used to justify both a large oceanic CH_3Br flux to the atmosphere and a small net ocean sink. Since the consumption reactions are extremely temperature-sensitive, small temperature variations have large effects on the CH_3Br concentration in seawater, and therefore on the exchange between the atmosphere and the ocean. The net CH_3Br flux is also sensitive to variations in the rate of CH_3Br production. We have quantified these effects using a simple steady state mass balance model. When CH_3Br production rates are linearly scaled with seawater chlorophyll content, this model reproduces the latitudinal variations in marine CH_3Br concentrations observed in the east Pacific Ocean by Singh et al. [1983] and by Lobert et al. [1995]. The apparent correlation of CH_3Br production with primary production explains the discrepancies between the two observational studies, strengthening recent suggestions that the open ocean is a small net sink for atmospheric CH_3Br, rather than a large net source. The Southern Ocean is implicated as a possible large net source of CH_3Br to the atmosphere. Since our model indicates that both the direction and magnitude of CH_3Br exchange between the atmosphere and ocean are extremely sensitive to temperature and marine productivity, and since the rate of CH_3Br production in the oceans is comparable to the rate at which this compound is introduced to the atmosphere, even small perturbations to temperature or productivity can modify atmospheric CH_3Br. Therefore atmospheric CH_3Br should be sensitive to climate conditions. Our modeling indicates that climate-induced CH_3Br variations can be larger than those resulting from small (±25%) changes in the anthropogenic source, assuming that this source comprises less than half of all inputs. Future measurements of marine CH_3Br, temperature, and primary production should be combined with such models to determine the relationship between marine biological activity and CH_3Br production. Better understanding of the biological term is especially important to assess the importance of non anthropogenic sources to stratospheric ozone loss and the sensitivity of these sources to global climate change

    Symmetric functions, tableaux decompositions and the Fermion-Boson correspondence

    Get PDF
    An extended Fermion-Boson correspondence is introduced for skew Schur functions. Certain members of a general class of recently-developed determinantal forms, based on outer strip decompositions of skew shape tableaux, are described in this context. Un analogue pour des fonctions de Schur gauche du correspondence Fermion-Boson est introduit. Á ce propos, nous decrivons certaines membres d'une nouvelle famille de determinants produit par des decompositions du tableau

    Central Charge Anomalies in 2D Sigma Models with Twisted Mass

    Full text link
    We discuss the central charge in supersymmetric N=2{\cal N}=2 sigma models in two dimensions. The target space is a symmetric K\"ahler manifold, CP(N−1)(N-1) is an example. The U(1) isometries allow one to introduce twisted masses in the model. At the classical level the central charge contains Noether charges of the U(1) isometries and a topological charge which is an integral of a total derivative of the Killing potentials. At the quantum level the topological part of the central charge acquires anomalous terms. A bifermion term was found previously, using supersymmetry which relates it to the superconformal anomaly. We present a direct calculation of this term using a number of regularizations. We derive, for the first time, the bosonic part in the central charge anomaly. We construct the supermultiplet of all anomalies and present its superfield description. We also discuss a related issue of BPS solitons in the CP(1) model and present an explicit form for the curve of marginal stability.Comment: 30 pages, 1 figure, references adde
    • 

    corecore