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ABSTRACT 
An extended Fermion-Boson correspondence is introduced for skew Schur functions. Cer
tain members of a general class of recently-developed determinantalforms, based on outer 
strip decompositions of skew shape tableaux, a.re described in this context. 
Un analogue pour des fonctions de Schur gauche du correspondence Fermion-Boson est 
introduit. A ce propos, nous decrivons certaines membres d'une nouvelle fam.ille de 
determinants produit par des decompositions du tableau. 
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Introduction 

The theory of symmetric functions plays a natural role in the construction of certain 
basic representations of affine Lie algebras, based either on Clifford or on Heisen
berg algebras. The vertex operator construction1 provides a link between such real
izations (the so-called fermion-boson correspondence), and is intimately connected 
with the formulation and properties of solitonic integrable hierarchies2

• Recently the 
fermion-boson correspondence has been used to investigate various classes of sym
metric functions. Thus, parallels to the correspondence for the Schur S-functions
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2 Symmetric Functions, Tableaux Decompositions and FB Correspondence . . .

(and the KP hierarchy) have been developed for the Schur Q-functions (related to 
the BKP hierarchy), and more generally for the Hall-Littlewood functions3. Matrix 
elements of products of (standard bosonic) vertex operators in the Schur function 
basis are essentially the composite, or rational, Schur functions4

. Parallel state
ments exist for Q-functions, Hall-Littlewood functions, or even symmetric func
tions with arbitrarily weighted5 inner products related to realizations of q-deformed 
Heisenberg algebras6

. Finally, the fermion-boson correspondence has been used to 
prove new determinantal identities for Q-functions7 as well as composite Schur S
and Schur Q-functions8

, along with new approaches to symmetric function products 
and plethysms9

. 

In this note we consider a general class of new determinantal forms for (skew) 
Schur functions based on outer strip decompositions of (skew Ferrers) diagrams 
(when talking about decompositions we will use the words "diagram" and "tableau" 
interchangeably). These forms were introduced by Hamel and Goulden10 and their 
equivalence to Schur functions was proved combinatorially using lattice paths. Sim
ilar determinantal and Pfaffian forms have been derived for Schur Q-functions11, 
and symplectic and orthogonal Schur functions12 . Here an extended fermion-boson 
correspondence is introduced, and it is suggested that the new determinantal forms 
are manifestations of Wick's theorem in the extended space. This is demonstrated 
explicitly for certain special cases. We follow the symmetric function notation of 
Macdonald 13. 

The Fermion-Boson Correspondence 

The infinite-dimensional Clifford algebra of (charged) free fermions is generated by 
elements 1f'i, 1/!7 with i E 'll. and defining relations 

h'ii,1/ij} = N7,1/!J} = o,
{ 1f'i , 1/!J} = Dij , i, j E 'll. (1) 

The Fock representation :Fis defined by the choice of vacuum IO> such that 1/iilO >= 
1/!JIO>= 0, is:; O,j > 0, with states 1f'i

1 
• . • 1/i":_

ii 
.. , 10>, ik > O,jk � 0 orthonormal

with respect to an inner product which makes 1fi, 1/!7 adjoint. The space :F carries 
a representation of an algebra gl( oo) generated by Eij =: 1fi 1Pj :, where : vv' ::::: 
vv'- < vv' >, and the vacuum expectation value is < vv' >= (IO>, vv'IO > ). In 
particular, the operators Hn = I:ie'll. : 1f'i 1f'i+n : satisfy a Heisenberg algebra, and 
the eigenvalues of ad Ho provide a 'll.-grading on :F = EBn.:Fn which counts the total 
'charge'. 

There is an intimate connection between the space :F and the universal ring 
A= C[xi, x2, X3, ••. ] of symmetric polynomials in indeterminates xi, x2, x3, .... For 
a partition >.= (>.1,>.2,>.3, .. ,,>.p) where >.1 � >.2 � ... � >.p , we define in the 
usual way various generating sets such as the elementary, complete, or power sum
symmetric functions13, for example 

00 

L Pm (x)tm-l 
m=l 

A has the structure of a Hilbert space under the following inner product: if P>. =
P>.1P>.2 

• • ·, etc., then 
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where >. = ( nmn , · · ·, 2m2 , 1 m, ). The connection with 'free field representations' is 
seen from the fact that A carries a representation of a Heisenberg algebra: Pn -
a_n, D(Pn) <-4 an. 

A fundamental part of the fermion-boson correspondence is that the following 
'vertex operators', 

E(u, v) = u� (Z(u, v) - 1),

Z(u, v) = exp(I;;'°(un -vn)Xn ) exp(-I;;'° i(u-n -v-n) at), 
acting on functions of variables Xn , when expanded in Laurent modes with respect 
to u and v- 1, provide the generators Eij of the algebra of gl( oo) realized above on 
the space of free fermions. After the change of variables nXn -. Pn ( x), {) / 8Xn -. 
D(Pn (x)), we can consider equally the vertex operators acting on A. A key result4 

is that the matrix element of Z( u, v) is in fact a well-known symmetric function: 

Z(u, v)sa(x) 
= exp (I; tPn (ulv)pn (x)) exp (-I; tPn(ulv)D(Pn (x))) So: 
= (-l)lal I:(3 ,p sa'/p'(ulv)(-1)1Pl sf3/p(ulv)sf3(x) = (-l)lo:I I;f3 sa';f3(ulv)sf3(x), 

where the summation (over skew Schur functions of the arguments u = u-1
, v =

v-1
, as well as u, v) can be recognised as the 'composite' Schur function with su

persymmetric argument4. Crucial to the proof of this property are the exponential 
or so-called Cauchy identities, 

In fact, the formulae are valid for any number of arguments u, v, so that (af
ter normal ordering) a formally identical expression also holds for the matrix el
ement of a product of N vertex operators. These results also admit consider
able generalization. For example, symmetric polynomials can be defined for a 
generic class of inner products5 on A, labelled by a sequence of positive real num
bers a = (a1,a2,···). Define (P> u Pµ) = D>..µ Z>..CX>.., where CX>.. = a:n ···a;n' 
for a partition >. = (nmn · · .1m, ). Then there is an orthogonal basis (defined 
by Gram-Schmidt orthogonalization from the monomial symmetric functions) for 
which the above properties of vertex operators generalize. For example, if we take 
an = a(q"'n - q-"'n)/(q2n - q-2n), then for appropriate choices of a and� one can 
build level k realizations of affine Jq (2) and give explicit trace and matrix element 
expressions6 using the q-deformed vertex operators. 

The link between :F and A is made formally by introducing the operator eH(x), 
well-defined on :F, where H(x) = I:C::iPn(x)Hn/n. Then for :Fo there is an iso
morphism cro such that 

cro(alO>) =

( cro( ajO > ), cro(blO > )A 
< eH(x)a >, 
(alO >, blO>) (2) 

which also extends to arbitrary charge £. As a result, the symmetric polynomials 
related to any desired elementary basis of A can be found in :F. For example the 
Schur functions are recovered for a partition>. = (>.1 - 1. .. >.r - rj>.1 - 1. .. >.� - r)
in Frobenius notation as: 

S>..(x) = cro (eH(x) "P>..,"P>..2-1 · · ·"P>...-r+1"P":._>..�+1 · · .'ljJ":._>..�+rlO>) ·
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Fermionic representations of symmetric polynomials of this type allow powerful 
algebraic machinery to be brought to bear in verifying properties and suggesting 
new interrelationships. One of the major tools is Wick's theorem. For Vi either '!pi 

or 'lj;l, this gives the vacuum expectation value of a monomial in (an even number 
of) Vi as a Pfaffian, 

< V1 • · ·Vn >= Pf(< ViVj >).

For the case of S>,. above, the Pfaffian simplifies to a determinant (since < 'lj;'lj;' >=
< 'lj;*'lj;'* >= 0) and produces the Giambelli formula13 for a Schur function in terms 
of its Frobenius parts, 

S>,. = det ( S(>.,-il>..i-j)) 

This can easily be generalized to give a new formula8 for the corresponding com
posite Schur functions ( associated with rational tableaux), which may be proved in 
essentially the same way, using the general vertex operator matrix element noted 
above, and mapping back to the fermionic space: 

( 8(>.,-il>..i-j)( i)s,5;.µ(x) = det (1) ' s __ >.'-i -

µ,-i;l j x 

The equivalent of this formula also for Q-functions has recently been developed8 . 

Determinantal Forms, Strip Decompositions and an Extended Fermion
Boson Correspondence 

We now turn to a general class of Schur function determinantal forms which have 
recently been established combinatorially using Gessel-Viennot lattice path tech
niques, and which are based on planar decompositions of the underlying skew shape 
tableau10

. A decomposition divides the tableau >./ µ into a class of edgewise con
nected sets of boxes called strips ()j such that the strips are "nested," are nonover
lapping, and each intersect the left or bottom, and the top or right perimeter of the 
tableau (see Figure 1). The determinant S>./µ = det(se,#ei) involves strips Bi #Bi 

which are determined from Bi and Bj by a series of slide moves along top-left
to-bottom-right diagonals, with appropriate in-filling and boundary conditions for 
cases where the overlaying of Bi on Bj is not in general position, i.e. superimpose Bi 

on Bj such that the box of content k (where content is the column index minus the 
row index) in Bi is superimposed on the box of content kin Bj for all k. Then Bi #Bi 

is the strip defined by the boxes between the last box of Bi (that is, the box on the 
top or right perimeter) and the first box of Bj (that is, the box on the left or bottom 
perimeter). For example, in Figure 1, if 61 = 2 and 62 = 64/3, then 61 #62 = 4 and 
62#61 = 42/1 (note the operation is noncommutative). For the general case, see 
Hamel and Goulden10

. 

Thus for the decomposition of the tableau 8, 6, 2, 1/3, 2 in Figure 1, the deter
minant reads10 ( s2 

ss,6,2,1/s,2 = det 842/1 

0 ) 
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<> <> 

<> 

Figure 1: An outside decomposition of 8, 6, 6, 2, 1/3, 2. 

The existence of such generalized determinantal forms poses a challenge for al
gebraic techniques based on Wick's theorem and the fermion-boson correspondence 
as outlined in the previous section. Additional generality is provided by a sequence 
of isomorphisms at each charge sector, <J't : :Fe ---+ A such that 

<J'e(alO>) =< �eH(x)alO>,

for suitable ground states IC >. For example, an alternative to the Giambelli 
form of S>.(x) is the Foulkes form, which reads S>. = det(s>.,-i+i,im-i) where 
m � max(>.1, >.D and derives via Wick's theorem from 

S). =< OleH(x)'lf>.
1'!f.\2-1 · · ·'lf>-m-m+11Pi'lf*_1 · · ·'lf*-mlO> · 

Thus it could be anticipated that more general determinantal forms for s >. ( x) might 
derive from a systematic treatment of the fermion-boson correspondence at different 
charge sectors (see also 7•9 ). 

Here however we propose an extended construction based on the view that strip 
decompositions of arbitrary shape should be accommodated in a more general al
gebraic scheme. In fact, the scheme is demonstrated only for the >.1 + Ai + 1 outer 
decompositions interpolating between the Jacobi-Trudi, rows-only determinantal 
form (det(s>.,-i+j)), and the dual Jacobi-Trudi, columns-only forms (det(s

1
>-;-,+;)), 

with the Giambelli principal hook decomposition as a non-extended case. We call 
these rows-first or columns-first12 outside decompositions. They were known to 
Littlewood14 (p. 114) who used algebraic techniques to prove the determinants 
they generated were equal to the Schur function. 

We conjecture that the extended construction described here applies more gen
erally to yield also the determinantal forms given in Hamel and Goulden10. These
determinantal forms are based on arbitrary outside decompositions and include 
the skew Giambelli and rim ribbon results of Lascoux and Pragacz15•16. Note fur
ther that other determinantal forms due to Lascoux and Pragacz16 ( and not rep
resentable in terms of outside decompositions) are also candidates for investigation 
by these methods. 

The basic additional structure needed is a representation of a skew Schur func
tion, S>.Jµ, in terms of an extended fermionic space. Noting that S>./µ = D(s

µ
)s>. 

and the fact that D( ·) provides an algebra ( anti-)homomorphism, it follows from 
the linearity of H(x) that 

S>./µ =< OleD(H(x))aµ
IO>< OleH(x)a>.10>
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and a,>., aµ are the operators (at charge 0) associated with .>., µ respectively. At 
this point we may introduce an independent fermionic space :f '.'.::'. :F generated by 
Xi,Xj, i,j E 'll., with associated vacuum IO>, and Heisenberg generators Hn, such 
that 

S,>./µ =< eH (x)eH (x)aµa,>. >

where H(x) I:::=l HnD(Pn(x))/n and the vacuum expectation value is with 
respect to the tensor product IO> @15 >. Substituting now the explicit monomials 
in 'If, x for aµ and a,>. gives an expression which may be manipulated directly using 
Wick's theorem for the tensor product of the two Clifford algebras of free fermions. 
Moreover, it is possible in certain cases to define composite 'fermion' operators </>i, 
</>j for which Wick's theorem still applies, as we now show. 

Given a partition >., consider the 'rows first outside decomposition' where as 
strips the first k rows of >. are taken for any fixed k, 1 ::; k ::; >.L and the re
mainder are hooks, i.e. the decomposition is 81 = >.1, 82 = >.2, ... Bk = >.k, Bk+l =
Ak+i, 1>-� -k, . . .  Bk+i = >.k+i - i, 1 >-\-k-i+ l .... The number c of such hook strips
will be equal to the number of boxes in>. of content -k. As far as this decomposi
tion is concerned, the hook diagonal has been shifted down k positions. However, 
the decomposition can equally be regarded as originating from a principal hook 
(Giambelli) decomposition of a tableau augmented by k columns of length >.i, and 
skewed by the block k>.�. For this case the product aµa>. is, up to an overall sign 
resulting from rearranging the 1/J and 1/J* terms, 

k k c 

rr Xk-i+lx'.'. .. (>.� -i) rr 1P>.,+k-i+1 'lf:.(A� -i) rr "P>-k+, -i+11P:.(>.\-k-i)
i=l i=l i=l 

Set 
,/, .,. ,i,* .!,* * 'l'i = 'i'.\,+k-i+l, 'l'i = '1'-(>.i -i)X k-i+lX-(>.i -i) 

for 1 ::; i ::; k, and 
<l>k+i = "P>-k+,-i+l, <l>t+i = 1/J":..(>.\-k-i) 

for 1 ::; i ::; c. Then if Wick's theorem is assumed for the ¢; and ¢;* fermions the 
determinantal form 

det( < eH eH q;;ef;'J > ) (k+c)x(k+c)
is suggested. Remarkably, if the entries are interpreted separately as individual 
skew tableaux using the above rules, the resulting determinant coincides with the 
strip decomposition form10 for the present case, where Bi, 1 ::; i::; k are rows, and 
Bj , k + 1 ::; j ::; k + c are hooks as above, and the vacuum expectation values of the 
<p;q;j products precisely reproduce the Bi #Bj strip calculus10 for this case. 

Moreover, for a skew tableau>./µ for any k > µi, with the same augmentation, 
but allowing for the additional skewing of >. itself by adjusting the labels on the 
X, x* operators, the aµa>. product 

k c k 

rr "P>-i+k-i+l "P:.(Ai -i) rr "P>-k+,-i+ l "P:.(>.\-k-i) rr Xk-i+µi+1x:.<>-i -i) 
i=l i=l i=l 
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6 6 
<:; <:; 
~ ~ 

'y 'y 'y 

• • • .t. 4 4 
• 4 
• 4 

Figure 2: A rows-first decomposition for 844433322;222, k = 4. 

allows for composite operators <Pi, fl to be defined in a precisely analogous way to 
the above, but with Xk-i+l replaced by Xk-i+µ,+1 · For the example given in Figure 
2, 

<Pi= 'lj;*_7X6X-1, <Pt= 'lj;*_5X5X-6, <P1 = 'lj;*_5X4X-5, <fa:= 'lj;*_4X1X-4, <P~ = 'lj;*_3, <Pt= 'lj;*_2 

and the determinant produced is 

8317 /617 8316/516 8315 /415 8314/114 83l3 83p 

8717 /6l7 8716/516 87l5/4l5 8714/114 871s 8712 

844433322;222 det 
8517 /617 8516/516 86l5 /4l5 8614/114 85l3 86l2 

8417 /617 8416/516 8415 /4l5 8414/114 84l3 84p 

8317 /617 8316/516 83l5 /4l5 8314/114 83l3 83p 

8217 /617 8216/516 82l5/4l5 8214/114 8213 8212 

82 83 84 87 83l3 83p 

81 82 83 86 871s 87p 

1 81 82 85 85l3 85p 

0 0 1 83 8413 84p 
det 

0 0 0 82 8313 83p 

0 0 0 81 8213 82p 

which is exactly the determinant produced from the strip decomposition approach 
of Hamel and Goulden10 with ()1 = 2 (the 6), ()2 = 2 (the <:;), ()3 = 2 (the~), 
()4 = 3 (the 'v), ()5 = 3111 (the .t.), and ()6 = 211 (the 4). 

The procedure also generalizes to a 'columns-first outside decomposition' where 
the first strips are the first k columns and the remaining strips are hooks. Here the 
augmentation involves adding k rows to the top of the tableau, and skewing by the 
block >.f. For such a case, the aµa>,. monomial is 

k k c 

IT X>.1-i+1X'.:.(k-i) IT 7P>.1-i+17P'.:.(>.,+k-i) IT 7P>.;-k-i+l 7P:..(>.~+.-i)• 
i=l i=l i=l 
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!:::,. !:::,. !:::,. !:::,. !:::,. !:::,. !:::,. !:::,. 

!:::,. <> <> <> <> <> <> <> 
!:::,. <> <::;> <::;> <::;> <::;> <::;> <::;> 

!:::,. <> <::;> "v "v "v "v 

!:::,. <> <::;> "v • • •

!:::,. <> <::;> "v • ,. ,.
!:::,. <> <::;> "v • • 
!:::,. <> <::;> "v • • 

Figure 3: Figure 2 augmented. 

<> • !:::,. !:::,. !:::,. 

<> • !:::,. 

<> • !:::,. 

<> 

Figure 4: A decomposition for 5331. 

Setting 
</Ji = 7P>-1-i+1X.>-1-i+1X:_(k-i)> ¢f = 7P:_ (>-;+k-i) 

for 1 � i � k, and 
¢k+i = 7P>.;-k-i+l, ¢f = 7/J:.(>-�+;-i) 

for 1 � i � c, and again the determinant obtained by invoking Wick's theorem 
for the composite 'fermions' ¢i, </J'J reproduces the strip decomposition form10. For 
example, for Figure 4, the determinant is 

( 
S5l5/51 S5l3/51 

det s4l5/4 S413/4 
83!5 83!3 

The Giambelli principal hook decomposition thus emerges as a special case ( k = 
0) for which no augmentation to an extended fermionic space is needed in the
corresponding determinantal form. By contrast, the Jacobi-Trudi form is associated
with a rows-only decomposition corresponding to augmentation of >. by a maximal
block ( >.� - 1) x >.� to the left, while the dual Jacobi-Trudi form is associated with
a columns-only decomposition corresponding to augmentation of >. by a maximal
block >.1 x (>.1 - 1) on the top.

Conclusions 

The fermion-boson correspondence has been reviewed in the context of algebraic 
approaches to the theory of symmetric polynomials. In particular, new classes 
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of determinantal forms for Schur functions associated with skew tableaux10 have 

been considered in the framework of Wick's theorem. The new formulae generalize 

existing determinants by allowing planar 'outer' decompositions of tableaux into 

congruent strips of arbitrary shape. A restricted class, interpolating between the 

rows-only Jacobi-Trudi case, through the principal hook Giambelli case, to the 

columns-only dual Jacobi-Trudi case, has been shown to be accommodated through 

Wick's theorem for composite 'fermion' operators acting in an extended space, and 

which is mapped to the bosonic space of symmetric polynomials. The fact that the 

new determinantal forms exist for orthogonal and symplectic tableaux12 strongly 

suggests4 a generalised fermion-boson correspondence for these cases also. 
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