23,525 research outputs found
Refractory coatings and method of producing the same
The adhesion, friction, and wear properties of sputtered refractory coatings on substrates of materials that form stable nitrides is improved by placing each substrate directly below a titanium carbide target of a commercial radiofrequency diode apparatus in a vacuum chamber. Nitrogen is bled into the system through a nozzle resulting in a small partial pressure of about 0.5% to 2.5% during the first two minutes of deposition. The flow of nitrogen is then stopped, and the sputtering ambient is reduced to pure argon through a nozzle without interrupting the sputtering process. When nitrogen is deliberately introduced during the crucial interface formation, some of the titanium at the interface reacts to form titanium nitride while the metal of the substrate also forms the nitride. These two nitrides atomically mixed together in the interfacial region act to more strongly bond the growing titanium carbide coating as it forms on the substrate
Improved adherence of sputtered titanium carbide coatings on nickel- and titanium-base alloys
Rene 41 and Ti-6Al-4V alloys were radio frequency sputter coated with titanium carbide by several techniques in order to determine the most effective. Coatings were evaluated in pin-on-disk tests. Surface analysis by X-ray photoelectron spectroscopy was used to relate adherence to interfacial chemistry. For Rene 41, good coating adherence was obtained when a small amount of acetylene was added to the sputtering plasma. The acetylene carburized the alloy surface and resulted in better bonding to the TiC coating. For Ti-6Al-4V, the best adherence and wear protection was obtained when a pure titanium interlayer was used between the coating and the alloy. The interlayer is thought to prevent the formation of a brittle, fracture-prone, aluminum oxide layer
Adherence of sputtered titanium carbides
Sputtered coatings of the refractory metal carbides are of great interest for applications where hard wear-resistant materials are desired. The usefulness of sputtered refractory carbides is often limited, in practice, by spalling or interfacial separation. In this work improvements in the adherence of refractory carbides on iron, nickel and titanium based alloys were obtained by using oxidation, reactive sputtering or sputtered interlayers to alter the coating-substrate interfacial region. X-ray photoelectron spectroscopy and argon ion etching were used to characterize the interfacial regions, and an attempt was made to correlate adherence as measured in wear tests with the chemical nature of the interface
Effect of nitrogen-containing plasma on adherence, friction, and wear of radiofrequency-sputtered titanium carbide coatings
Friction and wear experiments on 440C steel surfaces that were rf sputtered with titanium carbide when a small percentage of nitrogen was added to the plasma were conducted. Both X-ray photoelectron spectroscopy and X-ray diffraction were used to analyze the resultant coatings. Results indicate that the small partial pressure of nitrogen (approximately 0.5 percent) markedly improves the adherence, friction, and wear properties when compared with coatings applied to sputter-etched surfaces, oxidized surfaces, or in the presence of a small oxygen partial pressure. The improvements are related to the formation of an interface containing a mixture of the nitrides of titanium and iron, which are harder than their corresponding oxides
X-ray photoelectron spectroscopy study of radiofrequency sputtered chromium bromide, molybdenum disilicide, and molybdenum disulfide coatings and their friction properties
Radiofrequency sputtered coatings of CRB2, MOSI2, and MOS2 were examined by X-ray photoelectron spectroscopy. The effects of sputtering target history, deposition time, RF power level, and substrate bias on film composition were studied. Friction tests were run on RF sputtered surfaces of 440-C steel to correlate XPS data with lubricating properties. Significant deviations from stoichiometry and high oxide levels for all three compounds were related to target outgassing. The effect of biasing on these two factors depended on the compound. Improved stoichiometry correlated well with good friction and wear properties
X-ray photoelectron spectroscopy study of radiofrequency-sputtered refractory compound steel interfaces
Radiofrequency sputtering was used to deposit Mo2C, Mo2B5, and MoSi2 coatings on 440C steel substrates. Both sputter etched and preoxidized substrates were used, and the films were deposited with and without a substrate bias of -300 V. The composition of the coatings was measured as a function of depth by X-ray photoelectron spectroscopy combined with argon ion etching. In the interfacial region there was evidence that bias produced a graded interface in Mo2B5 but not in Mo2C. Oxides of iron and of all film constituents except carbon were presented in all cases but the iron oxide concentration was higher and the layer thicker on the preoxidized substrates. The film and iron oxides were mixed in the MoSi2 and Mo2C films but layered in the Mo2B5 film. The presence of mixed oxides correlates with enhanced film adhesion
Modelling temperature-dependent larval development and\ud subsequent demographic Allee effects in adult populations of the alpine butterfly Parnassius smintheus
Climate change has been attributed as a driver of changes to ecological systems worldwide and understanding the effects of climate change at individual, population, community, and ecosystem levels has become a primary concern of ecology. One avenue toward understanding the impacts of climate change on an ecosystem is through the study of environmentally sensitive species. Butterflies are sensitive to climatic changes due to their reliance on environmental cues such as temperature and photoperiod, which regulate the completion of life history stages. As such, the population dynamics of butterflies may offer insight into the impacts of climate change on the health of an ecosystem. In this paper we study the effects of rearing temperature on the alpine butterfly Parnassius smintheus (Rocky Mountain Apollo), both directly through individual phenological changes and indirectly through adult reproductive success at the population level. Our approach is to formulate a mathematical model of individual development parameterized by experimental data and link larval development to adult reproductive success. A Bernoulli process model describes temperature-dependent larval phenology, and a system of ordinary differential equations is used to study impacts on reproductive success. The phenological model takes field temperature data as its input and predicts a temporal distribution of adult emergence, which in turn controls the dynamics of the reproductive success model. We find that warmer spring and summer temperatures increase reproductive success, while cooler temperatures exacerbate a demographic Allee effect, suggesting that observed yearly fluctuations in P. smintheus population size may be driven by inter-annual temperature variability. Model predictions are validated against mark-recapture field data from 2001 and 2003 − 2009
Non-analytical power law correction to the Einstein-Hilbert action: gravitational wave propagation
We analyze the features of the Minkowskian limit of a particular
non-analytical f(R) model, whose Taylor expansion in the weak field limit does
not hold, as far as gravitational waves (GWs) are concerned. We solve the
corresponding Einstein equations and we find an explicit expression of the
modified GWs as the sum of two terms, i.e. the standard one and a modified
part. As a result, GWs in this model are not transverse, and their polarization
is different from that of General Relativity. The velocity of the GW modified
part depends crucially on the parameters characterizing the model, and it
mostly results much smaller than the speed of light. Moreover, this
investigation allows one to further test the viability of this particular f(R)
gravity theory as far as interferometric observations of GWs are concerned.Comment: 18 pages, 3 figure
Phase Space Formulation of Quantum Mechanics. Insight into the Measurement Problem
A phase space mathematical formulation of quantum mechanical processes
accompanied by and ontological interpretation is presented in an axiomatic
form. The problem of quantum measurement, including that of quantum state
filtering, is treated in detail. Unlike standard quantum theory both quantum
and classical measuring device can be accommodated by the present approach to
solve the quantum measurement problemComment: 29 pages, 4 figure
Vacuum state of the quantum string without anomalies in any number of dimensions
We show that the anomalies of the Virasoro algebra are due to the asymmetric
behavior of raising and lowering operators with respect to the ground state of
the string. With the adoption of a symmetric vacuum we obtain a non-anomalous
theory in any number of dimensions. In particular for D=4.Comment: 14 pages, LaTex, no figure
- …