568 research outputs found

    Formal Higher-Spin Theories and Kontsevich-Shoikhet-Tsygan Formality

    Full text link
    The formal algebraic structures that govern higher-spin theories within the unfolded approach turn out to be related to an extension of the Kontsevich Formality, namely, the Shoikhet-Tsygan Formality. Effectively, this allows one to construct the Hochschild cocycles of higher-spin algebras that make the interaction vertices. As an application of these results we construct a family of Vasiliev-like equations that generate the Hochschild cocycles with sp(2n)sp(2n) symmetry from the corresponding cycles. A particular case of sp(4)sp(4) may be relevant for the on-shell action of the 4d4d theory. We also give the exact equations that describe propagation of higher-spin fields on a background of their own. The consistency of formal higher-spin theories turns out to have a purely geometric interpretation: there exists a certain symplectic invariant associated to cutting a polytope into simplices, namely, the Alexander-Spanier cocycle.Comment: typos fixed, many comments added, 36 pages + 20 pages of Appendices, 3 figure

    Correlations of the local density of states in quasi-one-dimensional wires

    Full text link
    We report a calculation of the correlation function of the local density of states in a disordered quasi-one-dimensional wire in the unitary symmetry class at a small energy difference. Using an expression from the supersymmetric sigma-model, we obtain the full dependence of the two-point correlation function on the distance between the points. In the limit of zero energy difference, our calculation reproduces the statistics of a single localized wave function. At logarithmically large distances of the order of the Mott scale, we obtain a reentrant behavior similar to that in strictly one-dimensional chains.Comment: Published version. Minor technical and notational improvements. 16 pages, 1 figur

    Hybridization of wave functions in one-dimensional localization

    Full text link
    A quantum particle can be localized in a disordered potential, the effect known as Anderson localization. In such a system, correlations of wave functions at very close energies may be described, due to Mott, in terms of a hybridization of localized states. We revisit this hybridization description and show that it may be used to obtain quantitatively exact expressions for some asymptotic features of correlation functions, if the tails of the wave functions and the hybridization matrix elements are assumed to have log-normal distributions typical for localization effects. Specifically, we consider three types of one-dimensional systems: a strictly one-dimensional wire and two quasi-one-dimensional wires with unitary and orthogonal symmetries. In each of these models, we consider two types of correlation functions: the correlations of the density of states at close energies and the dynamic response function at low frequencies. For each of those correlation functions, within our method, we calculate three asymptotic features: the behavior at the logarithmically large "Mott length scale", the low-frequency limit at length scale between the localization length and the Mott length scale, and the leading correction in frequency to this limit. In the several cases, where exact results are available, our method reproduces them within the precision of the orders in frequency considered.Comment: 10 pages, 5 figures. Several references added, minor corrections corresponding to the journal versio

    Formal Higher Spin Gravities

    Get PDF
    We present a complete solution to the problem of Formal Higher Spin Gravities --- formally consistent field equations that gauge a given higher spin algebra and describe free higher spin fields upon linearization. The problem is shown to be equivalent to constructing a certain deformation of the higher spin algebra as an associative algebra. Given this deformation, all interaction vertices are explicitly constructed. All formal solutions of the equations are explicitly described in terms of an auxiliary Lax pair, the deformation parameter playing the role of the spectral one. We also discuss a natural set of observables associated to such theories, including the holographic correlation functions. As an application, we give another form of the Type-B formal Higher Spin Gravity and discuss a number of systems in five dimensions.Comment: 30 pages; typos fixed, ref adde
    corecore