1,641 research outputs found

    Towards a Maximal Mass Model

    Full text link
    We investigate the possibility to construct a generalization of the Standard Model, which we call the Maximal Mass Model because it contains a limiting mass MM for its fundamental constituents. The parameter MM is considered as a new universal physical constant of Nature and therefore is called the fundamental mass. It is introduced in a purely geometrical way, like the velocity of light as a maximal velocity in the special relativity. If one chooses the Euclidean formulation of quantum field theory, the adequate realization of the limiting mass hypothesis is reduced to the choice of the de Sitter geometry as the geometry of the 4-momentum space. All fields, defined in de Sitter p-space in configurational space obey five dimensional Klein-Gordon type equation with fundamental mass MM as a mass parameter. The role of dynamical field variables is played by the Cauchy initial conditions given at x5=0x_5 = 0, guarantying the locality and gauge invariance principles. The corresponding to the geometrical requirements formulation of the theory of scalar, vector and spinor fields is considered in some detail. On a simple example it is demonstrated that the spontaneously symmetry breaking mechanism leads to renormalization of the fundamental mass MM. A new geometrical concept of the chirality of the fermion fields is introduced. It would be responsible for new measurable effects at high energies EME \geq M. Interaction terms of a new type, due to the existence of the Higgs boson are revealed. The most intriguing prediction of the new approach is the possible existence of exotic fermions with no analogues in the SM, which may be candidate for dark matter constituents.Comment: 28 page

    RegPredict: an integrated system for regulon inference in prokaryotes by comparative genomics approach

    Get PDF
    RegPredict web server is designed to provide comparative genomics tools for reconstruction and analysis of microbial regulons using comparative genomics approach. The server allows the user to rapidly generate reference sets of regulons and regulatory motif profiles in a group of prokaryotic genomes. The new concept of a cluster of co-regulated orthologous operons allows the user to distribute the analysis of large regulons and to perform the comparative analysis of multiple clusters independently. Two major workflows currently implemented in RegPredict are: (i) regulon reconstruction for a known regulatory motif and (ii) ab initio inference of a novel regulon using several scenarios for the generation of starting gene sets. RegPredict provides a comprehensive collection of manually curated positional weight matrices of regulatory motifs. It is based on genomic sequences, ortholog and operon predictions from the MicrobesOnline. An interactive web interface of RegPredict integrates and presents diverse genomic and functional information about the candidate regulon members from several web resources. RegPredict is freely accessible at http://regpredict.lbl.gov

    An Overview of Moessbauer Mineralogy at Gusev Crater, Mars

    Get PDF
    The Mars Exploration Rover (MER) Spirit landed on the plains of Gusev Crater on 4 January 2004 [1]. The scientific objective of the Moessbauer (MB) spectrometer on Spirit is to provide quantitative information about the distribution of Fe among its oxidation and coordination states, identification of Fe-bearing phases, and relative distribution of Fe among those phases. The speciation and distribution of Fe in Martian rock and soil constrains the primary rock types, redox conditions under which primary minerals crystallized, the extent of alteration and weathering, the type of alteration and weathering products, and the processes and environmental conditions for alteration and weathering.We discuss the Fe-bearing phases detected by Spirit s MB instrument during its first 540 sols of exploration [2,3]. Spirit roved eastward across the plains from its landing site to the Columbia Hills during the first approx.150 sols. Rocks are unweathered to weakly weathered olivine basalt, with olivine, pyroxene (Ol > Px), magnetite (Mt), and minor hematite (Hm) and nanophase ferric oxide (npOx) as their primary Fe-bearing minerals. Soils are generally similar basaltic materials, except that the proportion of npOx is much higher (up to approx.40%). NpOx is an oct-Fe3+ alteration product whose concentration is highest in fine-grained soils and lowest in rock interiors exposed by grinding with the Rock Abrasion Tool (RAT). Spirit explored the lower slopes of the Columbia Hills (West Spur) during sols approx.150-320. West Spur rocks are highly altered, even for interior surfaces exposed by grinding (Fe3+/FeT approx.0.56-0.84). High concentrations of npOx, Hm, and Mt are present. One rock (Clovis) contains significant quantities of goethite (alpha-FeOOH; approx.40% of total Fe). The detection of goethite is very significant because it is a mineralogical marker for aqueous alteration

    Imaging haemodynamic changes related to seizures: comparison of EEG-based general linear model, independent component analysis of fMRI and intracranial EEG

    Get PDF
    Background: Simultaneous EEG-fMRI can reveal haemodynamic changes associated with epileptic activity which may contribute to understanding seizure onset and propagation. Methods: Nine of 83 patients with focal epilepsy undergoing pre-surgical evaluation had seizures during EEG-fMRI and analysed using three approaches, two based on the general linear model (GLM) and one using independent component analysis (ICA): 1. EEGs were divided into up to three phases: early ictal EEG change, clinical seizure onset and late ictal EEG change and convolved with a canonical haemodynamic response function (HRF) (canonical GLM analysis). 2. Seizures lasting three scans or longer were additionally modelled using a Fourier basis set across the entire event (Fourier GLM analysis). 3. Independent component analysis (ICA) was applied to the fMRI data to identify ictal BOLD patterns without EEG. The results were compared with intracranial EEG. Results: The canonical GLM analysis revealed significant BOLD signal changes associated with seizures on EEG in 7/9 patients, concordant with the seizure onset zone in 4/7. The Fourier GLM analysis revealed changes in BOLD signal corresponding with the results of the canonical analysis in two patients. ICA revealed components spatially concordant with the seizure onset zone in all patients (8/9 confirmed by intracranial EEG). Conclusion: Ictal EEG-fMRI visualises plausible seizure related haemodynamic changes. The GLM approach to analysing EEG-fMRI data reveals localised BOLD changes concordant with the ictal onset zone when scalp EEG reflects seizure onset. ICA provides additional information when scalp EEG does not accurately reflect seizures and may give insight into ictal haemodynamics

    Fe-Bearing Phases Identified by the Moessbauer Spectrometers on the Mars Exploration Rovers: An Overview

    Get PDF
    The twin Mars Exploration Rovers Spirit and Opportunity have explored the martian surface at Gusev Crater (GC) and Meridiani Planum (MP), respectively, for about two Earth years. The Moessbauer (MB) spectrometers on both rovers have analyzed an aggregate of ~200 surface targets and have returned to Earth information on the oxidation state of iron, the mineralogical composition of Febearing phases, and the distribution of Fe among oxidation states and phases at the two landing sites [1-7]. To date, 15 component subspectra (10 doublets and 5 sextets) have been identified and most have been assigned to mineralogical compositions. Two subspectra are assigned to phases (jarosite and goethite) that are marker minerals for aqueous processes because they contain hydroxide anion in their structures. In this paper, we give an overview of the Febearing phases identified and their distributions at Gusev crater and Meridiani Planum

    Scalar and Spinor Particles with Low Binding Energy in the Strong Stationary Magnetic Field Studied by Means of Two-and Three-Dimensional Models

    Get PDF
    On the basis of analytic solutions of Schrodinger and Pauli equations for a uniform magnetic field and a single attractive δ(r)\delta({\bf r})-potential the equations for the bound one-active electron states are discussed. It is vary important that ground electron states in the magnetic field essentially different from the analog state of spin-0 particles that binding energy has been intensively studied at more then forty years ago. We show that binding energy equations for spin-1/2 particles can be obtained without using of a well-known language of boundary conditions in the model of δ\delta-potential that has been developed in pioneering works. Obtained equations are used for the analytically calculation of the energy level displacements, which demonstrate nonlinear dependencies on field intensities. It is shown that in a case of the weak intensity a magnetic field indeed plays a stabilizing role in considering systems. However the strong magnetic field shows the opposite action. We are expected that these properties can be of importance for real quantum mechanical fermionic systems in two- and three-dimensional cases.Comment: 18 page

    Out-of-Equilibrium Admittance of Single Electron Box Under Strong Coulomb Blockade

    Full text link
    We study admittance and energy dissipation in an out-of-equlibrium single electron box. The system consists of a small metallic island coupled to a massive reservoir via single tunneling junction. The potential of electrons in the island is controlled by an additional gate electrode. The energy dissipation is caused by an AC gate voltage. The case of a strong Coulomb blockade is considered. We focus on the regime when electron coherence can be neglected but quantum fluctuations of charge are strong due to Coulomb interaction. We obtain the admittance under the specified conditions. It turns out that the energy dissipation rate can be expressed via charge relaxation resistance and renormalized gate capacitance even out of equilibrium. We suggest the admittance as a tool for a measurement of the bosonic distribution corresponding collective excitations in the system

    Influence of Structural Features and Physico-chemical Properties of Metal-carbon Nanocomposites with Ferromagnetic Metal Inclusions on Microwave Radiation

    Get PDF
    Metal-carbon nanocomposites on the basis of polyacrylonitrile and compounds of metals (Fe, Ni, Co) synthesized at IR-heating and studied by SEM, X-ray phase analysis, Raman scattering, IR Fourier spec-troscopy are characterized by the carbon nanostructured amorphous graphite matrix with uniformly dis-tributed nanoparticles of metals (10-30 nm), their oxides and compounds – FeNi3 and FeCo, multilayered carbon nanotubes (~ 7-22 nm), and in the composition of Fe-Co / C fullerene-like formations – C60. All nanocomposites feature high absorption of electromagnetic waves in the frequency range 20-40 GHz. Two absorption mechanisms are proposed: dielectric loss in the amorphous carbon matrix and scattering of electric and magnetic components by ferromagnetic inclusions. Absorption was – 8.68 dB for Fe-Ni / C, – 12.93 dB for Fe / C, and – 7.07 dB for Ni / C and for Fe-Co / C was found to be maximum in the whole range studied (more than – 40 dB) with a peak of – 52.83 dB at 24.27 GHz, which is explained probably by both high nanocomposite electric conductivity 2 S / m and high specific magnetization of phase FeCo. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3625
    corecore