721 research outputs found

    Modelling chemistry and biology after implantation of a drug-eluting stent. Part I: Drug transport

    Get PDF
    Drug-eluting stents have been used widely to prevent restenosis of arteries following percutaneous balloon angioplasty. Mathematical modelling plays an important role in optimising the design of these stents to maximise their efficiency. When designing a drug-eluting stent system, we expect to have a sufficient amount of drug being released into the artery wall for a sufficient period to prevent restenosis. In this paper, a simple model is considered to provide an elementary description of drug release into artery tissue from an implanted stent. From the model, we identified a parameter regime to optimise the system when preparing the polymer coating. The model provides some useful order of magnitude estimates for the key quantities of interest. From the model, we can identify the time scales over which the drug traverses the artery wall and empties from the polymer coating, as well as obtain approximate formulae for the total amount of drug in the artery tissue and the fraction of drug that has released from the polymer. The model was evaluated by comparing to in-vivo experimental data and good agreement was found

    Dynamics of Sleep-Wake Transitions During Sleep

    Full text link
    We study the dynamics of the awakening during the night for healthy subjects and find that the wake and the sleep periods exhibit completely different behavior: the durations of wake periods are characterized by a scale-free power-law distribution, while the durations of sleep periods have an exponential distribution with a characteristic time scale. We find that the characteristic time scale of sleep periods changes throughout the night. In contrast, there is no measurable variation in the power-law behavior for the durations of wake periods. We develop a stochastic model which agrees with the data and suggests that the difference in the dynamics of sleep and wake states arises from the constraints on the number of microstates in the sleep-wake system.Comment: Final form with some small corrections. To be published in Europhysics Letters, vol. 57, issue no. 5, 1 March 2002, pp. 625-63

    Long-Term Consequences of Methamphetamine Exposure in Young Adults Are Exacerbated in Glial Cell Line-Derived Neurotrophic Factor Heterozygous Mice

    Get PDF
    Methamphetamine abuse in young adults has long-term deleterious effects on brain function that are associated with damage to monoaminergic neurons. Administration of glial cell line-derived neurotrophic factor (GDNF) protects dopamine neurons from the toxic effects of methamphetamine in animal models. Therefore, we hypothesized that a partial GDNF gene deletion would increase the susceptibility of mice to methamphetamine neurotoxicity during young adulthood and possibly increase age-related deterioration of behavior and dopamine function. Two weeks after a methamphetamine binge (4 x 10 mg/kg, i.p., at 2 h intervals), GDNF +/- mice had a significantly greater reduction of tyrosine hydroxylase immunoreactivity in the medial striatum, a proportionally greater depletion of dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) levels in the striatum, and a greater increase in activated microglia in the substantia nigra than wild-type mice. At 12 months of age, methamphetamine-treated GDNF +/- mice exhibited less motor activity and lower levels oftyrosine hydroxylase-immunoreactivity, dopamine, DOPAC, and serotoninthanwild-typemice. Greater striatal dopaminetransporter activity in GDNF +/- mice may underlie their differential response to methamphetamine. These data suggest the possibility that methamphetamine use in young adults, when combined with lower levels of GDNF throughout life, may precipitate the appearance of parkinsonian-like behaviors during aging

    Population sequencing data reveal a compendium of mutational processes in human germline

    Get PDF
    Mechanistic processes underlying human germline mutations remain largely unknown.Variation in mutation rate and spectra along the genome is informative about the biological mechanisms. We statistically decompose this variation into separate processes using a blind source separation technique. The analysis of a large-scale whole genome sequencing dataset (TOPMed) reveals nine processes that explain the variation in mutation properties between loci. Seven of these processes lend themselves to a biological interpretation. One process is driven by bulky DNA lesions that resolve asymmetrically with respect to transcription and replication. Two processes independently track direction of replication fork and replication timing. We identify a mutagenic effect of active demethylation primarily acting in regulatory regions. We also demonstrate that a recently discovered mutagenic process specific to oocytes can be localized solely from population sequencing data. This process is spread across all chromosomes and is highly asymmetric with respect to the direction of transcription, suggesting a major role of DNA damage

    Design and testing of hydrophobic core/hydrophilic shell nano/micro particles for drug-eluting stent coating

    Get PDF
    In this study, we designed a novel drug-eluting coating for vascular implants consisting of a core coating of the anti-proliferative drug docetaxel (DTX) and a shell coating of the platelet glycoprotein IIb/IIIa receptor monoclonal antibody SZ-21. The core/shell structure was sprayed onto the surface of 316L stainless steel stents using a coaxial electrospray process with the aim of creating a coating that exhibited a differential release of the two drugs. The prepared stents displayed a uniform coating consisting of nano/micro particles. In vitro drug release experiments were performed, and we demonstrated that a biphasic mathematical model was capable of capturing the data, indicating that the release of the two drugs conformed to a diffusion-controlled release system. We demonstrated that our coating was capable of inhibiting the adhesion and activation of platelets, as well as the proliferation and migration of smooth muscle cells (SMCs), indicating its good biocompatibility and anti-proliferation qualities. In an in vivo porcine coronary artery model, the SZ-21/DTX drug-loaded hydrophobic core/hydrophilic shell particle coating stents were observed to promote re-endothelialization and inhibit neointimal hyperplasia. This core/shell particle-coated stent may serve as part of a new strategy for the differential release of different functional drugs to sequentially target thrombosis and in-stent restenosis during the vascular repair process and ensure rapid re-endothelialization in the field of cardiovascular disease

    Atomic Resolution Cryo-EM Structure Of A Nativelike CENP-A Nucleosome Aided By An Antibody Fragment

    Get PDF
    Genomic DNA in eukaryotes is organized into chromatin through association with core histones to form nucleosomes, each distinguished by their DNA sequences and histone variants. Here, we used a single-chain antibody fragment (scFv) derived from the anti-nucleosome antibody mAb PL2-6 to stabilize human CENP-A nucleosome containing a native α-satellite DNA and solved its structure by the cryo-electron microscopy (cryo-EM) to 2.6 Å resolution. In comparison, the corresponding cryo-EM structure of the free CENP-A nucleosome could only reach 3.4 Å resolution. We find that scFv binds to a conserved acidic patch on the histone H2A-H2B dimer without perturbing the nucleosome structure. Our results provide an atomic resolution cryo-EM structure of a nucleosome and insight into the structure and function of the CENP-A nucleosome. The scFv approach is applicable to the structural determination of other native-like nucleosomes with distinct DNA sequences
    • …
    corecore