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Abstract

Mechanistic processes underlying human germline mutations remain largely unknown.Variation 

in mutation rate and spectra along the genome is informative about the biological mechanisms. 

We statistically decompose this variation into separate processes using a blind source separation 

technique. The analysis of a large-scale whole genome sequencing dataset (TOPMed) reveals 

nine processes that explain the variation in mutation properties between loci. Seven of these 

processes lend themselves to a biological interpretation. One process is driven by bulky DNA 

lesions that resolve asymmetrically with respect to transcription and replication. Two processes 

independently track direction of replication fork and replication timing. We identify a mutagenic 

effect of active demethylation primarily acting in regulatory regions. We also demonstrate that a 

recently discovered mutagenic process specific to oocytes can be localized solely from population 

sequencing data. This process is spread across all chromosomes and is highly asymmetric with 

respect to the direction of transcription, suggesting a major role of DNA damage.

The superb accuracy of transmission of genetic information between generations is one 

of the most fascinating properties of life. Infrequent errors in this transmission lead to 

mutations that are the source of genetic variation which fuels evolution and causes genetic 

disease. The key importance of mutagenesis motivated decades of experimental research 

that revealed various modes of errors made by complex machineries of DNA replication 

and DNA repair (1-3). In spite of this effort, biochemical mechanisms primarily responsible 

for human germline mutation remain uncharacterized. Statistical analysis of massive whole 

genome sequencing datasets in light of the knowledge accumulated by experimental genetics 

and biochemistry offers a promising avenue of inquiry.

Studies of the origin of cancer somatic mutations have been propelled by the statistical 

analysis of “mutation signatures” in cancer genomic datasets and by mapping these 

signatures to known exposures to endogenous and exogenous mutagens (4-6). This analysis 

exploits the trinucleotide context-dependency of mutation rate. Differential exposure of 

tumors to mutagens serves as the main statistical instrument for the analysis. This approach 

is not directly transferable to studies of human germline mutation because there is no analog 

of the differential mutagen exposure, although some success was achieved by comparing 

human populations (7-10).
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Here, we use variation along the genomic coordinate as the statistical instrument to 

decompose human germline mutagenesis into independent biochemical processes. Human 

mutation rate exhibits a modest but highly significant variation along the genome (11-13). 

Our model assumes that several mechanistic processes generate human germline mutations. 

These processes are characterized by types and context-dependency of nucleotide changes 

and vary in their relative intensities along the genome (Fig. 1A). Mutational signatures 

and the relative intensity of each process at each locus can be derived from the analysis 

of DNA sequencing data alone. Slightly more formally, each process is characterized by 

a relative preference for each of the 192 types of all possible single nucleotide mutations 

in trinucleotide contexts oriented to the reference strand. Each process is assumed to vary 

along the genome and the observed heterogeneity of mutational spectra between loci is 

driven by different relative contributions of the processes (Fig. 1A). Inference of mutational 

processes then represents a classical blind source separation problem that separates a set 

of source signals from observed signal mixtures. For that, we devised a computational 

approach that performs dimensionality reduction using Principal Component Analysis 

(PCA) following by Independent Component Analysis (ICA) of mutational spectra in 

reduced space, so that processes have independent spectra and each process may have either 

positive (enrichment) or negative (depletion) preferences for context-specific mutation types 

(Fig. S1A, see Methods). Although there could be different mathematical formulations of 

a source separation problem, we argue that PCA-based dimensionality reduction following 

by ICA-based spatial inference is both statistically powerful and biologically reasonable for 

the population datasets considered here compared to the other state-of-the art approaches 

(Fig. S1H, see Methods). Simulations show that, accounting for the size and properties of 

the TOPMed dataset, our approach recovers processes that have a genome-wide contribution 

of at least 0.1% of the overall mutation rate and spatial scale of at least 10kb (Fig. 1E).

As with any statistical procedure, the key question is whether a particular inferred process 

reflects the biological reality or is a spurious signal. A powerful way to assess the biological 

relevance of the inferred processes is provided by the symmetry between antiparallel 

strands of DNA. Although DNA is a symmetric molecule, directional processes such as 

transcription and replication break this symmetry. Mutational mechanisms coupled with 

these processes are strand-dependent. For example, within genes A>G mutations are 

depleted on the transcribed strand and enriched on the complementary non-transcribed 

strand. This observation is attributed to the action of transcription-coupled repair (TCR) 

(3, 14). All mutational mechanisms can be broadly classified into strand-dependent and 

strand-independent.

Our statistical procedure assigns the direction of mutations with respect to the human 

genome reference irrespectively of the direction of transcription, replication or double strand 

break repair. For some genes the reference strand happens to be transcribed, while for 

other genes it happens to be non-transcribed. As a consequence, in some genic regions 

we will detect depletion of A>G mutations and in others we will detect depletion of its 

complementary mutation T>C.

For a strand-dependent mutation process, our statistical procedure would infer two 

independent components (Fig. 1B). Remarkably, these components can be easily identified 
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as corresponding to the same underlying process because they would be exactly 

complementary to each other. Following the example of mutation processes associated with 

transcription, the intensity of A>G mutations in one of the components would be identical to 

the intensity of T>C in the other. In contrast, a mutation process that is not strand-dependent 

would generate a component that would be self-complementary (for example, the intensity 

of A>G would be identical to the intensity of T>C). As a result, all biologically relevant 

components would either be self-complementary or arise in mutually complementary pairs 

(Fig. 1B-D).

We rely on this observation to test the biological validity of the inferred processes. 

Motivated by the visual representation in Figure 1B,F, we called this test a “reflection test”.

We applied our method to a dataset of very rare single nucleotide variants (SNVs) from the 

TOPMed freeze 5 (15) serving as a proxy to mutations (16). Overall, the dataset included 

over 293 million SNVs with allele frequency below 10−4. To capture the regional variation, 

we binned the genome into 264,291 non-overlapping windows of 10 kb, which is the 

optimal scale for the number of inferred components (Fig. S1G)

ICA identifies 14 independent components that successfully pass the “reflection test”, 

corresponding to 9 mutational processes, 5 of which are strand-dependent and the remaining 

4 are strand-independent (Fig. 1F, Fig. S1C-E, Fig. S2). Almost all of these components 

have the average bootstrap support at the level of 70-99% (Fig. S1D).

These 14 components are robust with respect to window size and are reproduced in the 

independent gnomAD dataset (Fig. S1F). Finally, we validated these components using de 
novo mutations identified by parent-child trio sequencing (17, 18). The spectra of de novo 
mutations in loci dominated by a specific component show a high concordance with the 

component spectrum inferred from the TOPMed dataset (Fig. S1K-M).

Eight of nine processes show notable and highly distinct correlations with genomic features 

known to impact mutation rate, including gene bodies, replication timing, direction of 

replication, and chromatin accessibility (Fig. 2A, Table S1). This strong association is 

remarkable given that the statistical inference was totally agnostic with respect to features 

other than mutation density.

Broadly, mutations can be introduced either as replication errors or as a consequence 

of DNA damage. The hallmark of mutations induced by bulky DNA damage is strand 

asymmetry with respect to direction of transcription (3, 19) and, as we recently argued, 

direction of replication (20). Bulky DNA damage is resolved in a strand specific manner 

within gene bodies due to the action of TCR (3, 21) and due to the preferential error-prone 

damage bypass on the lagging strand during replication (2). Components 1 and 2 have 

mutually complementary spectra and together correspond to a single strand-dependent 

process (Fig. 1D, Fig. 2A, Fig. S1). The strand asymmetry of this process, measured as 

the difference between intensities of components 1 and 2, strongly correlates with directions 

of both transcription (r=0.32) and replication (r=−0.15). The sum of the two components 

intensities reflects the overall regional activity of the process 1/2. For the process 1/2, it 

correlates with replication timing (r=0.34). Components 1 and 2 correlate in strand specific 
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manner with the experimentally obtained activity of the transcription coupled repair system 

(21, 22) in a strand-specific way (Fig. S3). Collectively, these observations strongly suggest 

that the process 1/2 is driven by the asymmetric resolution of bulky DNA damage.

In contrast, strand-dependent process 3/4 likely captures replication errors. The asymmetry 

of this process strongly correlates with the direction of replication (r=0.31) but is 

not meaningfully associated with any other epigenomic feature including direction of 

transcription. Therefore, in contrast to process 1/2, this process is unlikely to be mediated 

by bulky DNA damage. We hypothesize that process 3/4 reflects either a differential fidelity 

between replicative polymerases or a differential efficiency of mismatch repair (MMR) 

between leading and lagging strands (1, 23, 24). Although replication infidelity is frequently 

assumed to be a major (or even leading) factor in germline mutagenesis (25, 26), process 

3/4 offers the first probable genomic footprint of replicative errors. Interestingly, process 3/4 

(sum of intensities of components 3 and 4) does not appreciably correlate with replication 

timing, even though many other processes do.

Process 5 most closely tracks replication timing (r=0.54), showing greater intensity in 

late-replicating regions. The association of germline mutation rate with replication timing 

was noted a decade ago, but it was shown to be quantitatively weak (13, 27). A recent 

study reported that the association is much stronger for C>A mutations (28). C>A mutations 

are indeed enriched in process 5, although this enrichment is limited to TpCpN sequence 

contexts. Unlike other processes, process 5 affects all mutation types in the same direction 

(all types have positive values in the spectrum). This process is responsible for the 

largest fraction of mutation rate variation along the genome (Fig. 2A). In spite of these 

observations, the interpretation of this process is not straightforward because replication 

timing itself is correlated with many epigenomic features. Interestingly, most other processes 

are associated with replication timing, not only to a weaker degree, but also in the opposite 

direction (Fig. 2A). This counteracting effect explains the weakness of the association 

between overall mutation rate and replication timing.

Strand asymmetric process 6/7 is dominated by C>G transversions and is characterized 

by strong local spikes totaling 265 Mb throughout the genome (Figure 3A-C). Analysis 

of de novo mutations within these regions reveals that they are dramatically enriched in 

mutations of maternal origin (Table S2). Several genomic regions with high prevalence of 

maternal mutations, many of them occurring in clusters, have been reported by the original 

trio sequencing studies (29, 30). Spikes of process 6/7 include all these regions and many 

previously unreported regions, also strongly enriched in individual and clustered mutations 

of maternal origin (Table S2 and Table S3). Overall, the rate of clustered maternal de novo 
mutations in regions of high intensity of process 6/7 is 18-fold higher than in the rest of the 

genome. These regions constitute 10% of the genome but harbor 67% of clustered maternal 

mutations (Fig. 3D, Table S3). Mutations in high intensity regions of process 6/7 have 

stronger dependence on maternal age and are responsible for 35% of mutations caused by 

oocyte aging. Mutations within these regions show a 2.6-fold excess in children of older 

mothers compared to younger mothers (Fig. 3H). In the remaining 90% of the genome this 

excess is just 1.4-fold. In contrast to earlier reports, this difference is not limited to C>G 

mutations (30).
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Five prominent spikes of process 6/7 overlap long fragile genes (WWOX, RBFOX1, 
CSMD1, FHIT, SDK1) (31). In these and other genes, process 6/7 displays a strong strand 

asymmetry with respect to transcription (Fig. 3, Fig S4, Fig S5; r=0.26). Within the gene 

bodies as compared to flanking regions, the rate of C>G mutations is decreased on the 

transcribed strand and is increased on the non-transcribed strand by as much as 50-200% 

(Fig. 3, Fig. S5).

Maternal mutations accumulate in oocytes that are arrested in the second phase of meiosis 

from the early stages of embryogenesis. Thus, the age-related increase of maternal mutations 

is unlikely to be explained by replication errors. Alternative mutation mechanisms should 

involve either DNA damage or resolution of double strand breaks outside of S-phase. The 

latter is favored by the current literature (29, 30). This is an appealing explanation in light 

of mutation clusters and the striking maternal age dependency resembling the impact of age 

on structural variants (32). This is consistent with our observation that process 6/7 overlaps 

genes with common fragile sites. At the same time, the directly established spectrum of 

mutations induced by recombination has no sign of enrichment in C>G and is very different 

from process 6/7 (18). Furthermore, the signature of homology repair deficiency in cancer 

genomes also has a very different spectrum (4).

The strand asymmetry of process 6/7 cannot be easily explained by the double strand break 

model. The reduction of mutations on the transcribed strand suggests the role of bulky 

DNA damage repaired by TCR. In addition, the relationship with direction of replication 

(r=0.14, Fig. 2A, Fig. S4A) probably indicates that the unrepaired lesions on the leading 

and lagging strands are asymmetrically converted into mutations at the very first division 

of the zygote. The most surprising observation is the increase of mutation rate on the 

non-transcribed strand. Transcription-associated mutagenesis (TAM) has been previously 

reported in lower organisms and in some cancer types (19, 33). Our analysis identifies 

TAM in human oocytes and shows that it is primarily localized to bursts of the process 6/7 

(Fig. 3G, Fig. S5). TAM is a strand-dependent process associated with transcription and is 

unlikely to be explained by double strand break repair. Collectively, these observations, point 

to the localized susceptibility to DNA damage or the failure of DNA repair.

Processes 8 and 9 are dominated by mutations in the CpG context. Process 8 is characterized 

by CpG transitions and describes a well-known mechanism of spontaneous deamination 

of methylated cytosines which converts them into thymines. As expected, the intensity 

of process 8 is positively correlated with methylation levels and is low in CpG islands 

marking actively demethylated regulatory elements. Process 9 is characterized by CpG 

transversions. The intensity of this process spikes at CpG islands and is negatively correlated 

with methylation level (Fig. 4). CpG transversions were previously shown to be positively 

associated with the level of cytosine hydroxymethylation (34). Based on high intensity in 

CpG islands, the negative correlation with methylation level and the positive correlation with 

hydroxymethylation level, we hypothesize that process 9 is caused by active demethylation 

of regulatory regions. Enzymatic demethylation is initiated by oxidation of a methylcytosine 

resulting in a hydroxymethylcitosine (35). The hydroxymethylcitosine base, following 

cycles of subsequent oxidation, is removed by the Base Excision Repair system (BER), 
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creating an abasic site. Unfinished repair of abasic sites is known to result in C>G mutations 

(36).

Process 9 explains a small portion of the mutation rate variability. However, 

it disproportionately contributes to regulatory regions of the human genome. In 

undermethylated regions, the rate of CpG transversions is elevated under ChIP seq peaks 

for transcription factors (Figure 4). The mutagenic effect of repair of hydroxymethylated 

cytosines has been shown previously (34). We identify this process in an unsupervised 

manner and attribute it to unintended side effect of the functionally significant 

demethylation. In line with our model, cadmium, that suppresses cytosine demethylation, 

leads to depletion of C>G mutations in daphnia (Supplementary Manuscript).

The only remarkable association between intensity of process 10/11 and genomic features 

is a weak spike at the transcription end site on the transcribed strand of the gene (Figure 

2E). Potentially this process is associated with transcription termination, but this localized 

effect is diluted at the 10 KB scale. The remaining processes 12/13 and 14 explain small 

proportions of the mutation rate variation. Statistical analysis of these processes does 

not unequivocally suggest specific biological mechanisms (see Supplementary Note for 

discussion of these processes).

Our analysis was enabled by the massive scale of the TOPMed dataset. Subsampling of the 

dataset shows that many components would not be detectable in smaller datasets. Even at 

the TOPMed scale, there are no statistical signs of saturation for the number of detectable 

processes (Fig. S1I-J) and a notable range of mutational processes remains undetectable in 

current settings (Fig. 1E). We hypothesize that larger population sequencing datasets are 

needed to paint a more detailed picture human germline mutagenesis.

In sum, our unsupervised statistical analysis of the genomic variation in mutation rate 

evident in population sequencing data implicates a compendium of biological processes 

responsible for human mutation. Our approach identifies a highly localized strand-dependent 

process dominated by mutations of maternal origin. This process tracks direction of 

transcription, suggesting a dominant role of transcriptionally-mediated damage in oocytes. 

We also characterize a mutation signature of replication errors, which has been historically 

suspected to be a major source of germline mutation. We attribute mutagenic patterns of 

repair of hydroxymethylated cytosines (34) to active demethylation of regulatory regions. 

We envision that a spatial mutational model applied to new datasets will uncover new links 

between DNA biochemistry and localized mutational patterns.

Material and Methods.

Preparation of mutational matrix

As a proxy for germline mutations, we used SNVs with allelic frequency below 10−4 

from TOPMed freeze 5 (1) or gnomAD (2). The genome was binned into non-overlapping 

windows of 2, 5, 10, 30, 100 or 1000 kilobases in size, and mutation rate within each 

window was estimated as a ratio between the number of mutations and the number of 

available sites. To explore uniformity of the calling/sequencing quality, we obtained the 
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distribution of the number of mutations within 1 kb windows across the genome. This 

distribution was bimodal with the first mode equal to 0 SNVs per region (Fig. S1A). This 

mode clearly corresponded to regions of low quality. Therefore, we excluded 1kb loci 

with the abnormally low mutation counts (less than 50 mutations) from all subsequent 

analyses. Overall, our results were stable with respect to different filtering thresholds (data 

not shown).

Inference of mutational components

Mutation rates for each mutation type were Z-score transformed across all windows to zero 

mean and unit standard deviation. Using a predefined number of components n, matrix R 
of transformed mutation rates in w=264’291 windows of t=192 mutation types was then 

factorized by singular value decomposition using the R package svd:

Rw × t = Uw × n ⋅ Λn × n ⋅ V n × t (1)

Matrix Vn×t of loadings of mutation types onto first n principal components was then 

centered to zero mean of columns V^n,t = Vn,t – ⟨V⟩n, and rotated to infer statistically 

independent residual spectra components M^n×t using the independent component analysis 

(ICA) R package icafast:

V n, × t∧ = Sn × n ⋅ M n × t∧

Components spectra were then defined as:

Mn, t = M n, t∧ + (S−1)n, t ⋅ 〈V 〉n

Since ICA defines components up to a sign and scalar, signs of rows of M were oriented to 

enable positive third moment and scales of rows were normalized to unit Euclidean norm. 

Oriented matrix Mn,t was considered as a matrix of normalized loadings of mutation types 

on components, while the matrix of intensities of mutational components in windows was 

estimated as: I = U · Λ · S. Altogether, matrix Rw,t of transformed mutation rates was 

factorized into a product of intensities Iw,n and independent spectra Mn,t of n mutational 

processes:R=I · M.

The spearman correlation coefficient was estimated between the spectrum and reverse 

complementary spectrum of each pair of components and with itself (we call it reflection 

correlation). Components having a reflection correlation more than 0.75 with at least one 

component were considered having reflection, or were otherwise considered to be noise. 

Inferred components were then classified into strand-independent, strand-dependent pairs 

or noise using the reflection test. Among components with reflection, components having 

a reflection correlation of more than 0.75 to itself were considered strand-independent. 

Pairs of components having a reflection correlation with each other were considered as two 

components of a strand-dependent process. Empirical observations show that a cutoff of 0.75 

falls in a wide interval of values that deliver the same classification of components.
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Since the reflection property of a component likely indicates its biological relevance, 

we used the number of components having reflection as a natural criterion to choose a 

predefined number of inferred components n: the number of components with reflection was 

estimated for the range of values of n from 2 to 50, and the value of n corresponding to 

the highest number of components with reflection was selected. The procedure identified 

that the maximum number of mutational components with reflection is 14 for 10kb genomic 

windows.

As a first step Rwxt matrix was factorized on 14 components (n=14) with svd. Than to select 

the optimal window size, the algorithm was applied for a range of windows from 2 kb to 

1 mb (2, 5, 10, 30, 100, 1000 kilobases) using these 14 input components. The number of 

components with reflection (Spearman correlation > 0.75) was estimated for each window 

size. Only window of 10 kb had all 14 components with reflection.

Power analyses of the datasets

The dataset was subsampled up to the size of 1, 5, 20, 40, 60, 80, 90 and 95 % of the original 

dataset. For each subsampled dataset the method estimated mutational components using 

svd decompose matrix as input. Recovery quality of a component of the original dataset 

in each subsampled dataset was estimated as maximum absolute Pearson correlation across 

all inferred components of a subsampled dataset. To account for uncertainty in subsampling 

outcome, quality of recovery was averaged across 10 independent sampling runs at each 

subsampling depth. Finally, at each subsampling depth we estimated average number of 

components 1) having reflection and 2) having highly correlated (>0.75) counterpart in the 

original dataset.

Comparison of different inference methods.

We compared methods that use decorrelation, independence, and non-negativity as 

constraints on matrix factorization problem. PCA was used as a baseline method that 

decorrelates mutational components using matrix R of mutation type rates, Z-score 

transformed across genomic windows. In case of PCA, mutational components were 

interpreted as rows of orthogonal matrix V (see equation 1). PCA was also used as 

a dimensionality reduction approach before ICA. Mutational components that maximize 

independence of spectra were obtained as described above, while independence of intensities 

was achieved using ICA of orthogonal matrix U (see equation 1).

On the other hand, non-negative matrix factorization (NMF) approach was applied to the 

matrix of mutation type rates with each mutation type rate normalized by its genome-wide 

average level. Using NMF R package we run standard NMF algorithm (option ‘brunet’), 

NMF that tends to produce sparser components (option ‘ns-NMF’, default parameters) 

and NMF that tends to diversify expression of components patterns (option ‘pe-NMF’, 

parameters: alpha=0.01, beta=1). Since we noticed that for this TOPMed dataset NMF tends 

to converge to different local optima, each NMF algorithm was run using 10 starting points, 

including ‘nnsvd’, ‘ica’ and 8 ‘random’ options. To make analysis of NMF components 

compatible with that of PCA and ICA, NMF-inferred components were centered by 

subtracting 1 (normalized genome-wide average rates). All of the methods were run using 
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dimensionality of 14 of input components. Components that have spectra dominated by 

a single outlier mutation type, that is 10 times exceeding loadings of any other mutation 

types, were removed. Reflection test with cutoff of 0.75 on reflection correlation was used to 

estimate the number of potential biological components for each method.

Statistical properties of mutational components

The scale of mutational components was defined using a linear autoregressive model. The 

spatial intensity of each mutational component was modeled as:

Ip = ∑
k = 1

M
ak ⋅ Ip − k + ξp,

where Ip is the intensity at position p, ak are autoregressive coefficients and ξp is the residual 

noise. Order M of the model was chosen using Akaike Information Criterion. The R package 

ar was used to fit the autoregressive model. The scale of each process was defined as the 

half-life of the autoregressive model

ℎl = ln(0.5)
ln(∑k = 1

M ak . )

The contribution of each component was defined as the squared sum of intensities. 

Contributions of all components were then scaled to the unit sum.

Assessment of components robustness

Robustness of each component spectrum was assessed using a bootstrap of genomic 

windows. 500 sets of 14 components were inferred using a bootstrap of windows. 

Maximum Spearman correlations between an original component and the components in 

each bootstrapped set were calculated to provide estimates of the similarity of potentially 

identical components. For all mutational components, average Spearman correlations of the 

spectra with bootstrapped components were above 0.68, indicating the robustness of spectra 

estimates.

Inference of components was repeated for a window size of 5 kb and 30 kb to explore 

robustness with respect to window size. For each window choice, the procedure of inference 

was repeated independently, including selection of the optimal number of components. The 

spectra of all original components were recapitulated, with a correlation of more than 0.64 in 

at least one of two runs. Finally, component spectra were compared between TOPMed and 

gnomAD datasets. For that, the procedure of components inference, including selection of 

the optimal number of components, was repeated for the gnomAD dataset using a window 

size of 100 kb. The spectra of most components were recapitulated with a correlation of 

more than 0.6, while three components (3, 10, 11) showed moderate correlation (0.46, 

0.43, 0.55). Overall, this indicates that components are robust with respect to the choice of 

window and dataset.
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Comparison with de novo data

To assess if the spatial distribution of de novo mutations is consistent with individual 

mutational processes, we pooled 421,106 de novo point mutations from two datasets (3, 4) 

and estimated the log ratio of de novo frequencies of mutation types in 25% of genomic 

windows of high component intensities relative to frequencies of mutation types in the 

whole genome. Consistency of de novo data with the mutational component is quantified 

as the Spearman correlation between this log ratio for de novo mutations and the spectrum 

of the corresponding mutational component. Spearman correlations were positive for each 

component. To estimate the uncertainty of these correlations, we repeated the estimation 

of Spearman correlations multiple times using bootstrapped sets of genomic windows. The 

significance of each association was assessed as the p-value of zero correlation relative 

to the distribution of bootstrapped Spearman correlations. The results show that for all 

components the correlation is significantly consistent (p < 0.05; Supplementary Figure 1). 

To assess parent-specific effects, the Spearman correlation between the log ratio of de novo 
mutation frequencies and the spectrum of mutational process was estimated separately for 

phased maternal and paternal de novo mutations. Before this procedure, 63,387 paternal de 
novo mutations were downsampled to match the size of 17,406 maternal de novo mutations. 

The distribution of differences between maternal and paternal Spearman correlations 

was constructed using a bootstrap of genomic windows to assess statistical significance, 

estimated as the p-value of zero correlation relative to the bootstrapped distribution. 

Similarly, to assess age effects of mutational processes, the dataset was partitioned by 

the average age of parents in two equal parts of young and old parents and the procedure 

identical to that applied for parent-specific effects was repeated.

Simulations to assess the limitations of the approach

The ability to infer spatially-varying mutational processes depends on their statistical 

properties, such as spatial scale, degree of variability along the genome and degeneracy 

of mutational spectrum. Limitations of inference with respect to these statistical properties 

were analyzed through simulations of mutational processes underlying spatially variable 

mutation rates. Briefly, we simulated spectra and intensities of 14 mutational components 

corresponding to 4 strand-independent and 5 strand-dependent processes (4·1 and 5·2 

components respectively), linearly combined them to obtain variable mutation type rates 

along the genome and sampled mutation counts using Poisson process. Then the procedure 

of spatial inference was made for the matrix of simulated mutation counts and spectra of 

inferred components were compared to simulated ones to estimate quality of recovery. 

Recovery quality of a simulated component was calculated as a maximum absolute 

Pearson correlation to inferred components. Simulations were repeated 8000 times to assess 

processes in a wide range of scales, loadings and spectra degeneracies.

In more detail, intensities of components were simulated by continuous Ornstein-Uhlenbeck 

(O-U) processes. Scale of component was estimated as half-life (hl) of O-U process. The 

latter was sampled from 100 bp to 200 kb uniformly at log scale. Stationary O-U mean 

m (see equation 2) was assigned to 3 and stationary variance α was sampled from 0.005 

to 5 uniformly at log scale. Stationary variance controls the degree of spatial variability of 

components. Overall, intensities I were modeled using O-U diffusion:
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dI = λ ⋅ (m − I) ⋅ dp + σ ⋅ N(0, 1), (2)

where p is genomic position, λ is a rate of reversion log(2)
ℎl , σ = 2 ⋅ α ⋅ λ, α = exp(unif(log(5 · 

10−3), log(5))), m = 3.

Rate vector of 192 mutation types was sampled using Dirichlet distribution S = Dir(α ⋅ 1 )
with a concentration parameter α sampled uniformly from 0.01 to 10 at log scale. 

Concentration parameter controls degeneracy of spectra and is shown in Supplementary 

Fig. 1a as a “spectra degeneracy” score. Mutation type rates of components spectra were 

then re-normalized to match the average observed genome-wide mutation frequencies in 

TOPMed. Rates Si,j of each spectra mutation type j were scaled by a factor cj: Si,j ← Si,j 

· cj, where cj =
μj

∑i 〈Ii〉 ⋅ Si, j
 with μj being average genome-wide mutation rate of type j and 

⟨Ii⟩ is average intensity of a process i. Finally, expected mutation rates of each type j in 

each window w is a linear combination of components vw,j = Σi Iwi · Sij. Mutation counts 

of each type in each window were sampled from Poisson process with a rate mw,j = vw,j · 

cj proportional to mutation rate vw,j and average number of available cj context triplets per 

window in the human genome. The procedure of components inference was then applied to 

matrix mw,j of simulated mutation counts.

Associations with epigenetic tracks and DNA features

We relied on the analysis of correlations between mutational processes and epigenomic 

tracks to gain insight into biological mechanisms.

Replication timing was obtained from (5). In the absence of data from the relevant germline 

tissue, we used the track for Mcf7 cells. The results were insensitive to the choice of cell 

type. Replication fork direction was determined as in (6).

Gene coordinates were obtained from the ‘knownGenes’ track downloaded from the UCSC 

genome browser. We measured gene bias within each window as the number of nucleotides 

transcribed on the reference strand minus the number of nucleotides transcribed on the 

strand complementary to the reference. Correlations with process 6/7 asymmetry, estimated 

as the difference in intensities of components 6 and 7, were calculated only in regions of 

high intensity of process 6/7 (component 6 + component 7 intensity >1.4).

Methylation level for each CpG dinucleotide were obtained from (7) and the methylation 

level of a window was calculated as a mean across all CpG sites within it.

Hydroxymethylation data was obtained from (8). Because this track is very sparse, similarly 

to previous study (9), we considered any CpG site with the fraction of hydroxymethylated 

reads exceeding 0.1 as hydroxymethylated. The hydroxymethylation level of a window 

was calculated as the fraction of hydroxymethylated CpG dinucleotides among all CpG 

dinucleotides.
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Histone modifications H3k4me3, H3k27ac and H3k4me1 were downloaded from the 

UCSC genome browser. These tracks were obtained for human embryonic stem cells as 

a potentially relevant cell type.

Sex-specific recombination rate were obtained from (3).

CpG islands coordinates were downloaded from UCSC genome browser.

Correlations between all tracks and mutational processes are listed in Supl. Table 1.

Associations with the activity of nucleotide excision repair

Nucleotide excision repair (NER) effectively removes bulky lesions and its activity is partly 

governed by chromatin structure (10). Kinetics of CPD and 6-4PP repair by NER was 

measured in (11). Repair of 6-4PP occurs within less than an hour and thus is unlikely 

to be relevant for the mutagenesis that operates in the germline, because divisions of 

spermatogonia take many days and the dictate phase of oogenesis lasts for many years. 

Therefore, we focused on the repair of CPDs, a much slower process (11). The majority of 

UV-induced lesions occur in TT dinucleotides due to properties of UV radiation. To account 

for this bias, we normalized NER activity to TT dinucleotide content. Following this, we 

correlated NER efficiency with the intensity of each mutational process.

On the other hand, local activity of NER should be inverse to the amount of the damage 

that remains in DNA after 48 hours past UV-irradiation. We correlated mutational processes 

with the amount of unrepaired CPD damage (12), normalized to TT dinucleotide content. 

Correlations between NER activity and mutational processes are shown in Fig. S4.

Clustered de novo mutations

In line with previous studies, we defined clustered de novo mutations as pairs of mutations 

observed in the same individual at distances less than 20,000 nucleotides (13, 14). De novo 
mutations were obtained from (3) and entire clusters were attributed to be of maternal or 

paternal origin if there was at least one phased mutation of this origin. Clusters that have 

mutations on both the paternal and maternal haplotype were excluded.

Alteration of mutation rate in gene bodies

To directly estimate the effect of transcription on mutation rate, we compare the mutation 

rate for each of 12 mutation types on the non-transcribed strand of the gene to the mutation 

rate 100 KB upstream and downstream of the gene (Fig. 3G and Suppl. Fig. S5). To 

reliably estimate the intensity of the process and the mutation rate within genes, only 

genes longer than 100 KB were considered. Differences in mutation rate between the 

gene and flanking region were normalized to the genome-average mutation rate for each 

corresponding mutation type.

Maternal age effect in regions susceptible to process 6/7

“Maternal regions” were determined by the high intensity of component 6 + component 

7. To choose the threshold for this sum, we compared quintiles of the distribution of 
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component 6 + component 7 to that of the normal distribution and the deviated right tail of 

8601 windows was used to define “maternal regions” (Fig. S.5).

To calculate the effect of maternal age, Broyden–Fletcher–Goldfarb–Shanno maximum 

likelihood algorithm was used (R package bbmle). We deal with the uncertainty contributed 

by non-phased mutations as in (15).

Effect of transcription binding sites on mutation rate

Aggregate ChIP-seq peaks were obtained from ReMap2018 (16). CpG islands were 

excluded from the following analysis.

Mutation rate for the set of transcription factor binding sites was calculated in overlapping 

100 nucleotide-long sliding windows for each trinucleotide context, then this rate was 

normalized on genome average mutation rate values and combined into the stated categories 

using a weighted average.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. Inference of spatially-varying mutational processes in germline.
(A) Observed spatial variability of mutational spectrum is modeled as a number of 

mutational processes with specific spectra and spatially-varying intensities.

(B) Strand-independent mutational processes have equal rates of complementary mutations 

at each locus. Strand-dependent mutational processes produce two unequal patterns of 

complementary mutation rates at loci depending on the strand orientation of a genomic 

feature.

(C) Example of a predicted strand-independent process. Loadings of complementary 

mutations of mutational component 9 are highly similar.

(D) Example of a predicted strand-dependent process. Loadings of complementary 

mutations between two mutational components 1 and 2 are highly similar and characterize 

a single mutational process (left). In contrast to strand-independent process (see Fig. 

1C), loadings of complementary mutations of mutational component 1 (upper right) and 

component 2 (lower right) are almost uncorrelated.

(E) Theoretical scale-loading limitations for detection of mutational processes shows 

potentially high range of processes that can be recovered with the proposed approach. 

Simulations of mutational processes at different scales (quantified as half-life of simulated 

Ornstein-Uhlenbeck process) and spatial loadings (fraction of spatially-varying mutations of 

a process among total mutations, scheme) were based on parameters from TOPmed dataset. 
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Quality of recovery was assessed using maximum absolute correlation between spectra of 

each simulated component and reconstructed components.

(F) Reflection matrix reveals strand-dependency of processes and separates biological 

signal from noise. Correlation of spectrum of one mutational component with reverse 

complementary spectrum of another demonstrates clear separation into self-correlated 

components (5,8, 9,14) and pairs of mutually correlated components (1/2, 3/4, 6/7, 10/11, 

12/13).
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Fig 2. Mutational processes are associated with distinct genomic features.
(A) Heatmap of correlations of intensities with genome features shows diverse modes 

of associations (left). For strand-dependent processes two spatial characteristics were 

considered: intensity (int.), estimated as the sum of intensities of two components, and 

asymmetry (as.), estimated as the difference between intensities of two components. 

Fraction of mutational variance explained by each process (middle) and scale, estimated 

as the half-life of the autoregressive model (right) are shown.

(B) (top) The spectrum of one of the two components comprising process 1/2; (bottom) 

An example of intensities of components 1 and 2, associated with non-transcribed strands 

on chromosome 1. The bars on the bottom of the panel depict gene bodies (colors: cyan if 

transcribed strand is the reference strand and orange otherwise).

(C) (top) The spectrum of one of the two components comprising process 3/4; (bottom) The 

association between the asymmetry of process 3/4 (component 3 – component 4) and the 

direction of the replication fork measured as a gradient of replication timing.

(D) The spectrum of component 5 (top), and its association with replication timing (bottom).

(E) (top) The spectrum of component 10; (bottom) Intensity of component 10 among 13 

consecutive 10 KB-long regions adjacent to the transcription end site (TES). Box plot shows 

component 10 intensity. Mean intensity of component 10 in each region shown as a red 

point. Mean fraction of the transcribed nucleotides per region shown on the bottom.
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Fig 3. Oocyte-specific mutational process.
(A) The spectrum of one of the two components comprising process 6/7.

(B and C) Examples of two loci with high intensity of process 6/7, estimated as the sum of 

intensities of component 6 and component 7. Black dots on top of the panels mark windows 

of high intensity that we call “maternal regions” (see Methods). Red dots show de novo 
maternal clustered mutations from Halldorsson et al. (18).

(D) Enrichment of maternal clustered de novo mutations from Halldorsson et al. in maternal 

regions. The fraction of each chromosome that is attributed to “maternal regions” (high 

intensity of process 6/7) is shown in black. The fraction of maternal clustered mutations 

located within maternal regions on each chromosome is shown in red; the difference in size 

between the red and black bars indicates enrichment of clustered mutations within “maternal 

regions”.
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(E and F) Zoom in view of process 6/7 intensity spikes around FHIT and CSMD1 genes on 

non-transcribed strands. Bars on the bottom depict gene bodies (colors: cyan if transcribed 

strand is the reference strand and orange otherwise).

(G) Difference between C>G mutation rate on transcribed or non-transcribed strand of a 

gene compared to a 100 KB region flanking the gene. Red dots correspond to genes within 

maternal regions and black dots corresponds to genes outside of maternal regions. Density 

plots on the top and right summarize the distributions on the X and Y axes.

(H) Ratio of parent-specific de novo mutation rates between first and last parent age 

quartiles is shown, estimated independently for “maternal regions” and for the rest of the 

genome. The error bars show the 95% confidence interval (95% CI) for the ratio of two 

binomial proportions test.
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Fig 4. Cytosine deamination and cytosine demethylation.
(A and D) The mutational spectrum of component 8 is dominated by CpG>TpG (top), while 

component 9 is dominated by CpG>GpG and CpG>ApG (bottom).

(B, C, E and F) Association between the intensity of components 8 and 9 and cytosine 

methylation or cytosine hydroxymethylation.

(G) Process 8 is inversely correlated with the density of CpG islands, while process 9 is 

positively correlated. Blue dots represent density of CpG islands across a 50 MB long region 

of chromosome 5.

(H) Effect of CpG islands on mutation rate in CpG context and in cytosines outside of CpG 

context.

(I) Mutation rate in CpG context at transcription factor binding sites located outside of 

annotated CpG islands, as determined by ChIP-seq peaks (see Methods), normalized to the 
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genome average mutation rate. 95% binomial proportion confidence intervals are displayed 

in transparent lines. Higher levels of demethylation at these sites lead to the accelerated rate 

of CpG transversions.

(J) Illustration of the biochemical mechanisms suggested for processes 8 and 9. Enzymatic 

oxidation of methylcytosine (5-mC) leads to hydroxymethylcytosine (5-hmC) (35), which 

after additional steps of oxidation should be removed by glycosylase, leaving an abasic 

site (AP). During DNA replication, AP sites will frequently be converted to CpG>GpG 

mutations and more rarely to CpG>ApG mutations, matching the spectra of process 9 (36). 

Alternatively, successful repair of AP sites creates non-methylated cytosines. Alternately, 

spontaneous deamination of methylcytosine creates a T to G mismatch, enhancing the rate 

of CpG>TpG mutations. While deamination should be prevalent in CpG sites with high 

methylation levels, the mutagenic effect of demethylation should be prominent in CpG 

islands.
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