115 research outputs found

    Stress distribution and the fragility of supercooled melts

    Full text link
    We formulate a minimal ansatz for local stress distribution in a solid that includes the possibility of strongly anharmonic short-length motions. We discover a broken-symmetry metastable phase that exhibits an aperiodic, frozen-in stress distribution. This aperiodic metastable phase is characterized by many distinct, nearly degenerate configurations. The activated transitions between the configurations are mapped onto the dynamics of a long range classical Heisenberg model with 6-component spins and anisotropic couplings. We argue the metastable phase corresponds to a deeply supercooled non-polymeric, non-metallic liquid, and further establish an order parameter for the glass-to-crystal transition. The spin model itself exhibits a continuous range of behaviors between two limits corresponding to frozen-in shear and uniform compression/dilation respectively. The two regimes are separated by a continuous transition controlled by the anisotropy in the spin-spin interaction, which is directly related to the Poisson ratio σ\sigma of the material. The latter ratio and the ultra-violet cutoff of the theory determine the liquid configurational entropy. Our results suggest that liquid's fragility depends on the Poisson ratio in a non-monotonic way. The present ansatz provides a microscopic framework for computing the configurational entropy and relaxational spectrum of specific substances.Comment: 11 pages, 5 figures, Final version published in J Phys Chem

    Aging, jamming, and the limits of stability of amorphous solids

    Full text link
    Apart from not having crystallized, supercooled liquids can be considered as being properly equilibrated and thus can be described by a few thermodynamic control variables. In contrast, glasses and other amorphous solids can be arbitrarily far away from equilibrium and require a description of the history of the conditions under which they formed. In this paper we describe how the locality of interactions intrinsic to finite-dimensional systems affects the stability of amorphous solids far off equilibrium. Our analysis encompasses both structural glasses formed by cooling and colloidal assemblies formed by compression. A diagram outlining regions of marginal stability can be adduced which bears some resemblance to the quasi-equilibrium replica meanfield theory phase diagram of hard sphere glasses in high dimensions but is distinct from that construct in that the diagram describes not true phase transitions but kinetic transitions that depend on the preparation protocol. The diagram exhibits two distinct sectors. One sector corresponds to amorphous states with relatively open structures, the other to high density, more closely-packed ones. The former transform rapidly owing to there being motions with no free energy barriers; these motions are string-like locally. In the dense region, amorphous systems age via compact activated reconfigurations. The two regimes correspond, in equilibrium, to the collisional or uniform liquid and the so called landscape regime, respectively. These are separated by a spinodal line of dynamical crossovers. Owing to the rigidity of the surrounding matrix in the landscape, high-density part of the diagram, a sufficiently rapid pressure quench adds compressive energy which also leads to an instability toward string-like motions with near vanishing barriers. (SEE REST OF ABSTRACT IN THE ARTICLE.)Comment: submitted to J Phys Chem

    Лазерные фазовые дальномеры: пути повышения точности

    Get PDF
       Scientific and technological progress in the field of geodetic and industrial measurements in terms of the use of laser rangefinders operating in ranges up to 5000 meters has led to a reduction in the error of such measuring instruments over the past ten years by two or more times. Such rapid development of high-precision rangefinder technologies has led to a significant revision of the requirements for their metrological support, as well as to the need to develop a new generation of length standards, the stock of metrological accuracy of which would provide an assessment of the metrological characteristics of all types of existing and promising length measuring instruments with a laser rangefinder. To solve this problem, the Institute’s staff conducted research within the framework of a number of thematic research and development works in terms of developing the appearance of a new generation of length standards operating in the range up to 5000 meters in an open atmosphere. Within the framework of this article, one of the developed models of a high-precision complex of measuring instruments for length and coordinate increments is considered, which is a serial high-precision laser phase light meter, modified by the institute’s staff in terms of the system for receiving and processing measuring signals. At the same time, in order to increase the accuracy of length measurements using the developed range finder layout, it is proposed to investigate ways to reduce the errors of the model components of the boundaries of its error. To ensure the smallest error in determining the hardware correction of the rangefinder layout, it is proposed to use funds from the state primary special standard of the unit of length. As promising ways to reduce the error in determining the phase difference of signals, it is proposed to use digital recording and signal processing devices that implement a method for calculating the phase difference of signals by mathematically processing the recorded data using a specially developed computational algorithm based on Fourier analysis. For the most accurate determination of the values of the pulse repetition frequency of signals and the values of the speed of light on the measured track, it is proposed to improve the means of determining these indicators. The use of the proposed methods to improve the accuracy of measuring the length of laser phase rangefinders allows you to provide the necessary margin of metrological accuracy.   Научно-технический прогресс в сфере геодезических и промышленных измерений в части использования лазерных дальномеров, работающих в диапазонах до 5 000 метров, привел к уменьшению погрешности выше перечисленных средств измерений за последние десять лет в два и более раза. Следствием такого стремительного развития технологий высокоточной дальнометрии стал значительный пересмотр требований по их метрологическому обеспечению, а также необходимость разработки нового поколения эталонов длины, запас метрологической точности которых обеспечивал бы оценку метрологических характеристик всех типов существующих и перспективных средств измерений длины, имеющих в своем составе лазерный светодальномер. Для решения этой задачи авторами в рамках ряда тематических научно-исследовательских опытно-конструкторских работ проводились исследования с целью разработки нового поколения эталонов длины, работающих в диапазоне до 5 000 метров, в условиях открытой атмосферы. В данной статье рассмотрен один из разработанных макетов высокоточного комплекса средств измерений длины и приращений координат. Макет представляет собой высокоточный лазерный фазовый дальномер с доработанной системой приема и обработки измерительных сигналов. С помощью данного макета дальномера предлагается исследовать пути уменьшения составляющих его погрешности с целью повышения точности измерений длины. Для обеспечения наименьшей погрешности определения аппаратурной поправки макета дальномера могут служить средства из состава Государственного первичного специального эталона единицы длины. В качестве перспективных путей уменьшения погрешности определения разности фаз сигналов представляется возможным использовать устройства цифровой регистрации и обработки сигналов, в которых реализован метод расчета разности фаз сигналов путем математической обработки зарегистрированных данных с помощью специально разработанного вычислительного алгоритма на основе Фурье-анализа. Наиболее точное определение значений частоты следования импульсных сигналов и значений скорости света на измеряемой трассе может быть получено благодаря использованию высокоточных средств определения данных показателей. Реализация предложенных авторами методов повышения точности измерений длины лазерных фазовых дальномеров позволяет обеспечивать необходимый запас метрологической точности

    The Ultimate Fate of Supercooled Liquids

    Full text link
    In recent years it has become widely accepted that a dynamical length scale {\xi}_{\alpha} plays an important role in supercooled liquids near the glass transition. We examine the implications of the interplay between the growing {\xi}_{\alpha} and the size of the crystal nucleus, {\xi}_M, which shrinks on cooling. We argue that at low temperatures where {\xi}_{\alpha} > {\xi}_M a new crystallization mechanism emerges enabling rapid development of a large scale web of sparsely connected crystallinity. Though we predict this web percolates the system at too low a temperature to be easily seen in the laboratory, there are noticeable residual effects near the glass transition that can account for several previously observed unexplained phenomena of deeply supercooled liquids including Fischer clusters, and anomalous crystal growth near T_g

    Electronic structure and the glass transition in pnictide and chalcogenide semiconductor alloys. Part I: The formation of the ppσpp\sigma-network

    Full text link
    Semiconductor glasses exhibit many unique optical and electronic anomalies. We have put forth a semi-phenomenological scenario (J. Chem. Phys. 132, 044508 (2010)) in which several of these anomalies arise from deep midgap electronic states residing on high-strain regions intrinsic to the activated transport above the glass transition. Here we demonstrate at the molecular level how this scenario is realized in an important class of semiconductor glasses, namely chalcogen and pnictogen containing alloys. Both the glass itself and the intrinsic electronic midgap states emerge as a result of the formation of a network composed of σ\sigma-bonded atomic pp-orbitals that are only weakly hybridized. Despite a large number of weak bonds, these ppσpp\sigma-networks are stable with respect to competing types of bonding, while exhibiting a high degree of structural degeneracy. The stability is rationalized with the help of a hereby proposed structural model, by which ppσpp\sigma-networks are symmetry-broken and distorted versions of a high symmetry structure. The latter structure exhibits exact octahedral coordination and is fully covalently-bonded. The present approach provides a microscopic route to a fully consistent description of the electronic and structural excitations in vitreous semiconductors.Comment: 22 pages, 17 figures, revised version, final version to appear in J. Chem. Phy

    Oxidative stress markers in patients suffering from opioid and psychostimulant dependence syndrome

    Get PDF
    Background. The available data from clinical studies suggest the essential role of free radical processes in the pathogenesis of drug dependence syndrome. At the same time, there is a limited understanding of using markers of oxidative stress in laboratory monitoring and prediction of drug pathology.Objective. To characterize changes in promising indicators of oxidative stress in patients with psychostimulant and opioid dependence syndrome.Material and Methods. The total study population was divided into three groups of men aged 23–35: healthy controls (n = 20), patients with the opioid (n = 20) and psychostimulant (n = 20) dependence syndrome. Patients were analyzed for the oxidative stress markers while being in therapy for addiction syndrome aimed at treating mental disorders and detoxification.Results. The study of antioxidant activity and blood plasma thiol groups did not reveal any significant differences between patients suffering from opioid and psychostimulant addiction. The values of the parameters mentioned above were maintained by 20–30% lower than the control indices throughout the entire study. The nature of changes in erythrocyte suspension parameters was not so unambiguous. Thus, patients with opioid dependence syndrome were characterized by a 91% increase in thiobarbituric acid (TBA)-reactive materials in the setting of a slightly altered state of the glutathione system parameters. Psychostimulant dependent patients revealed relatively low level of the products of biomolecule oxidative modifications in the erythrocytes that is 52% higher compared to the control values. It decreased during the therapy, but glutathione concentration reduction by 33% and an imbalance of glutathione metabolism were determined.Conclusion. The course of the opioid dependence syndrome is characterized by a pronounced intensification of free radical processes while the common trait for psychostimulant abusers is significant changes in the antioxidant defense system. Therefore, in the first case, it is most justified to conduct a laboratory assessment of indicators of oxidative damage, and in the second one, it is also advisable to determine the markers of the state of individual links of the antioxidant system

    Changes in indicators of the prooxidant-antioxidant system in patients with drug addiction during the rehabilitation

    Get PDF
    Background: Despite the positive dynamics in this scientific area, the prevalence of drug pathology in Russia and other countries of the world remains unfavorable. Determination of laboratory markers of pathobiochemical processes which are characteristic to the patients with substance use disorder is promising from the standpoint of monitoring the course of the disease and evaluating the effectiveness of therapy.Objective: To determine the characteristic changes in oxidative homeostasis of patients with addiction to psychostimulants and opioids at the rehabilitation and anti‑relapse stage.Material and methods: The study was performed with the participation of 20 relatively healthy male volunteers and 18 male patients with addiction to opioids or psychostimulants who then became participants of the rehabilitation and anti‑relapse course of treatment. Changes in oxidative stress markers during rehabilitation and anti‑relapse treatment were studied.Results: In comparison to the control values at the initial stage of the study, patients of the main group demonstrated decreased values of the iron‑reducing ability of blood plasma – by 25%, as well as those of the sorption radical ability of blood plasma – by 30%; the content of thiol groups of blood plasma proteins decreased by 24% while the concentration of glutathione in erythrocyte suspension lowered by 26%. The level of TBA‑reactive products in erythrocyte suspension corresponded to the control level. The performed rehabilitation manipulations contributed to the partial normalization of oxidative homeostasis, which was confirmed by a statistically significant increase in the ability of radical sorption of blood plasma by 20% and the concentration of reduced glutathione in erythrocyte suspension by 28% in comparison to the initial values of the corresponding parameters in patients of the 2nd group. The TBA‑reactive products remained within the control values.Conclusion: The studied markers are suitable for monitoring the state of oxidative homeostasis in patients with opioid or psychostimulant addiction, the imbalance of which at the end of the rehabilitation and anti‑relapse stage also indicates the prospects for strengthening the antioxidant component as part of drug or nutritional correction

    The Intrinsic Quantum Excitations of Low Temperature Glasses

    Full text link
    Several puzzling regularities concerning the low temperature excitations of glasses are quantitatively explained by quantizing domain wall motions of the random first order glass transition theory. The density of excitations agrees with experiment and scales with the size of a dynamically coherent region at TgT_g, being about 200 molecules. The phonon coupling depends on the Lindemann ratio for vitrification yielding the observed universal relation l/λ150l/\lambda \simeq 150 between phonon wavelength λ\lambda and mean free path ll. Multilevel behavior is predicted to occur in the temperature range of the thermal conductivity plateau.Comment: 4 pages, submitted to PR

    Analysis of Protein Markers in Plasma of Patients with Drug Dependence Syndrome: Observational Clinical Study

    Get PDF
    Background. In drug addiction treatment, the diagnostic process is based on the chemical toxicological determination of the intoxication substrate or its metabolite. Laboratory monitoring and prediction issues that could form the basis of secondary prevention remain unresolved. Specific nervous tissue proteins are considered to be the most promising laboratory markers of drug pathology.Objective — to determine some potential biomarkers of protein-chemical nature in the plasma of patients with drug dependence syndrome.Methods. The study was conducted according to the design of an observational clinical trial at the Narcological Dispensary of Krasnodar Krai in the period from 07.2021 to 07.2022. The main group (group 2) included 31 patients diagnosed with substance dependence syndrome. The control group (group 1, n = 15) consisted of healthy subjects submitted to occupational medical examinations. During the detoxification-stabilization therapy and rehabilitation, 5 proteins were determined in the plasma: brainand glial-derived neurotrophic factors, neuron-specific enolase, alpha-synuclein and calcium-binding protein S100B. Statistical analysis of the data involved the Mann-Whitney test for comparing the values of the control and experimental groups and the Wilcoxon test for comparing the values of one group obtained at different stages of observation. The calculations were carried out using StatPlus version 7 (AnalystSoft Inc., USA).Results. A total of 31 patients were included in the main group, 18 of them were followed up with a diagnosis of opioid dependence syndrome (n = 11) or psychostimulant dependence syndrome (n = 7). Patients dropped out of the study due to their refusal to participate in the study or undergo rehabilitation, or due to relapse of the disease. When admitted to the hospital, patients indicated a 45% decrease in brain-derived neurotrophic factor in the plasma ( p < 0.001), and a 3.9-fold decrease after rehabilitation course ( p < 0.001). Glial-derived neurotrophic factor in the plasma exceeded the controls 1.9 times ( p < 0.001) upon admission to hospital, but rapidly returned to normal values thereafter. Level of neuron-specific enolase in the plasma was also poor, 36% lower than the controls ( p <0.001), but approached the control values by the end of rehabilitation.Conclusion. The study obtained data indicating the changes in neurotrophic factors in the blood plasma of patients with opioid or psychostimulant dependence. The rehabilitation period was marked by a relatively rapid improving level of neurotrophins; however, brain-derived neurotrophic factor remained reduced despite the successful treatment, which may indicate the irreversible changes

    Detection of hidden structures for arbitrary scales in complex physical systems

    Get PDF
    Recent decades have experienced the discovery of numerous complex materials. At the root of the complexity underlying many of these materials lies a large number of contending atomic- and largerscale configurations. In order to obtain a more detailed understanding of such systems, we need tools that enable the detection of pertinent structures on all spatial and temporal scales. Towards this end, we suggest a new method that applies to both static and dynamic systems which invokes ideas from network analysis and information theory. Our approach efficiently identifies basic unit cells, topological defects, and candidate natural structures. The method is particularly useful where a clear definition of order is lacking, and the identified features may constitute a natural point of departure for further analysis
    corecore