76 research outputs found

    Pore geometry as a control on rock strength

    Get PDF
    This study was funded via RJW's University of Leicester start-up fund, as part of AAB's PhD project. We thank Don Swanson and Mike Poland at HVO, Hawai'i, for their help and advice during fieldwork planning and sample collection in the Koa'e fault system, and the National Park Service for granting a research permit to collect rock samples. Sergio Vinciguerra is thanked for access to the Rock Mechanics and Physics lab at the British Geological Survey and Audrey Ougier-Simonin is thanked for her help preparing samples and advice during testing. We thank Mike Heap (EOST Strasbourg) and an anonymous reviewer for their detailed and careful comments that greatly improved the manuscript.Peer reviewedPostprin

    Precious metal enrichment in the Platreef, Bushveld Complex, South Africa: evidence from homogenized magmatic sulfide melt inclusions

    Get PDF
    Magmatic sulfide deposits are the most significant source of platinum-group elements (PGE) in the world. Key to understanding their genesis is determining the processes and timing of sulfide saturation, metal enrichment and crustal contamination. In this study, we have identified droplets of magmatic sulfide from the Platreef, South Africa, where droplets of sulfide have been trapped in the earliest crystallising phase, chromite. Due to their early entrapment at high temperatures, metal concentrations and ratios that they display are indicative of a very early-stage sulfide liquid in the system, as they will have cooled and fractionated within an essentially closed system, unlike interstitial blebs that crystallise in an open system as the magma cools. Analysis of these droplets in an opaque mineral like chromite by LA-ICP-MS is problematic as some of the fractionated inclusion is necessarily lost during cutting and polishing to initially identify the inclusion. This particularly affects the ability to representatively sample the most fractionated phases such as gold and platinum minerals. Here, using a novel technique whereby the inclusions are homogenized and quickly quenched, so that any cutting, polishing and subsequent LA-ICP-MS analysis samples a truly representative portion of the droplet. This has been used to show that early sulfide liquids in the Platreef were highly PGE-rich and had Pt/Pd ratios of close to unity that supports genetic models invoking sulfide saturation and metal enrichment prior to intrusion, with pre-enriched sulfides entrained within the Platreef magma

    Low Mate Encounter Rate Increases Male Risk Taking in a Sexually Cannibalistic Praying Mantis

    Get PDF
    Male praying mantises are forced into the ultimate trade-off of mating versus complete loss of future reproduction if they fall prey to a female. The balance of this trade-off will depend both on (1) the level of predatory risk imposed by females and (2) the frequency of mating opportunities for males. We report the results of a set of experiments that examine the effects of these two variables on male risk-taking behavior and the frequency of sexual cannibalism in the praying mantis Tenodera sinensis. We experimentally altered the rate at which males encountered females and measured male approach and courtship behavior under conditions of high and low risk of being attacked by females. We show that male risk taking depends on prior access to females. Males with restricted access to females showed greater risk-taking behavior. When males were given daily female encounters, they responded to greater female-imposed risk by slowing their rate of approach and remained a greater distance from a potential mate. In contrast, males without recent access to mates were greater risk-takers; they approached females more rapidly and to closer proximity, regardless of risk. In a second experiment, we altered male encounter rate with females and measured rates of sexual cannibalism when paired with hungry or well-fed females. Greater risk-taking behavior by males with low mate encounter rates resulted in high rates of sexual cannibalism when these males were paired with hungry females

    Extreme enrichment of Se, Te, PGE and Au in Cu sulfide microdroplets: evidence from LA-ICP-MS analysis of sulfides in the Skaergaard Intrusion, east Greenland

    Get PDF
    The Platinova Reef, in the Skaergaard Intrusion, east Greenland, is an example of a magmatic Cu–PGE–Au sulfide deposit formed in the latter stages of magmatic differentiation. As is characteristic with such deposits, it contains a low volume of sulfide, displays peak metal offsets and is Cu rich but Ni poor. However, even for such deposits, the Platinova Reef contains extremely low volumes of sulfide and the highest Pd and Au tenor sulfides of any magmatic ore deposit. Here, we present the first LA-ICP-MS analyses of sulfide microdroplets from the Platinova Reef, which show that they have the highest Se concentrations (up to 1200 ppm) and lowest S/Se ratios (190–700) of any known magmatic sulfide deposit and have significant Te enrichment. In addition, where sulfide volume increases, there is a change from high Pd-tenor microdroplets trapped in situ to larger, low tenor sulfides. The transition between these two sulfide regimes is marked by sharp peaks in Au, and then Te concentration, followed by a wider peak in Se, which gradually decreases with height. Mineralogical evidence implies that there is no significant post-magmatic hydrothermal S loss and that the metal profiles are essentially a function of magmatic processes. We propose that to generate these extreme precious and semimetal contents, the sulfides must have formed from an anomalously metal-rich package of magma, possibly formed via the dissolution of a previously PGE-enriched sulfide. Other processes such as kinetic diffusion may have also occurred alongside this to produce the ultra-high tenors. The characteristic metal offset pattern observed is largely controlled by partitioning effects, producing offset peaks in the order Pt+Pd>Au>Te>Se>Cu that are entirely consistent with published D values. This study confirms that extreme enrichment in sulfide droplets can occur in closed-system layered intrusions in situ, but this will characteristically form ore deposits that are so low in sulfide that they do not conform to conventional deposit models for Cu–Ni–PGE sulfides which require very high R factors, and settling of sulfide liquids

    Alpha shapes: Determining 3D shape complexity across morphologically diverse structures

    Get PDF
    Background. Following recent advances in bioimaging, high-resolution 3D models of biological structures are now generated rapidly and at low-cost. To utilise this data to address evolutionary and ecological questions, an array of tools has been developed to conduct 3D shape analysis and quantify topographic complexity. Here we focus particularly on shape techniques applied to irregular-shaped objects lacking clear homologous landmarks, and propose the new ‘alpha-shapes’ method for quantifying 3D shape complexity. Methods. We apply alpha-shapes to quantify shape complexity in the mammalian baculum as an example of a morphologically disparate structure. Micro- computed-tomography (μCT) scans of bacula were conducted. Bacula were binarised and converted into point clouds. Following application of a scaling factor to account for absolute differences in size, a suite of alpha-shapes was fitted to each specimen. An alpha shape is a formed from a subcomplex of the Delaunay triangulation of a given set of points, and ranges in refinement from a very coarse mesh (approximating convex hulls) to a very fine fit. ‘Optimal’ alpha was defined as the degree of refinement necessary in order for alpha-shape volume to equal CT voxel volume, and was taken as a metric of overall shape ‘complexity’. Results Our results show that alpha-shapes can be used to quantify interspecific variation in shape ‘complexity’ within biological structures of disparate geometry. The ‘stepped’ nature of alpha curves is informative with regards to the contribution of specific morphological features to overall shape ‘complexity’. Alpha-shapes agrees with other measures of topographic complexity (dissection index, Dirichlet normal energy) in identifying ursid bacula as having low shape complexity. However, alpha-shapes estimates mustelid bacula as possessing the highest topographic complexity, contrasting with other shape metrics. 3D fractal dimension is found to be an inappropriate metric of complexity when applied to bacula. Conclusions. The alpha-shapes methodology can be used to calculate ‘optimal’ alpha refinement as a proxy for shape ‘complexity’ without identifying landmarks. The implementation of alpha-shapes is straightforward, and is automated to process large datasets quickly. Beyond genital shape, we consider the alpha-shapes technique to hold considerable promise for new applications across evolutionary, ecological and palaeoecological disciplines

    A review of the behaviour of Platinum Group Elements within natural magmatic sulfide ore systems

    No full text
    The largest and most significant type of geological deposit of platinum group elements (PGEs) is that associated with magmatic base metal sulfide minerals in layered mafic or ultramafic igneous intrusions. The common association of PGEs with sulfide minerals is a result of processes of magmatic and sulfide liquid segregation and fractionation. The mineralogical nature of the ores is dependent on a number of factors during sulfide liquid fractionation. The most significant of these with regard to the mineralogy of the two most important metals, platinum and palladium, is the presence and concentration of semimetals such as bismuth and tellurium within the mineralising sulfide liquid. Whereas rhodium, iridium, osmium and ruthenium are almost always present in solid solution within the resultant base metal sulfide minerals; should sufficient semimetals be present, Pd and especially Pt will form discrete minerals (such as platinum bismuthides) around the margins of, and possibly away from, the sulfides

    Distribution of platinum-group elements in the Platreef at Overysel, northern Bushveld Complex: a combined PGM and LA-ICP-MS study

    No full text
    Detailed mineralogical and laser ablation-inductively coupled plasma-mass spectrometry studies have revealed the physical manifestation of the platinum-group elements (PGE) within the Platreef at Overysel, northern Bushveld Complex, South Africa. The PGE in the Platreef were originally concentrated in an immiscible sulfide liquid along with semi-metals such as Bi and Te. As the sulfide liquid began to crystallize, virtually all the Os, Ir, Ru and Rh partitioned into monosulfide solid solution (mss), which on further cooling, exsolved to form pyrrhotite and pentlandite with Os, Ir and Ru remaining in solid solution in both phases with Rh prefentially partitioning into pentlandite. Platinum, some Pd and Au were concentrated in the residual sulfide liquid after mss crystallization, and were then concentrated in an immiscible late stage melt along with semi metals, which was expelled to the grain boundaries during crystallization of intermediate solid solution (iss) to form Pt and Pd tellurides and electrum around the margins of the sulfide grains. Tiny droplets of this melt trapped in the crystallizing mss and iss cooled to form Pt–Bi–Te microinclusions in all sulfide phases, whilst the excess Pd was accommodated in solid solution in pentlandite. Minor redistribution and recrystallization by hydrothermal fluids occurred around xenoliths and at the very base of the mineralized zone within the footwall, however, the overall lack of secondary alteration coupled with the volatile-poor nature of the gneissic footwall have allowed the preservation of what may be the most ‘primary’ style of Platreef mineralization. The lack of PGM inclusions within early liquidus phases suggests very early sulfur saturation in the Platreef, lending support to theories involving S saturation occurring prior to intrusion of the Platreef, possibly within a staging chamber
    corecore