30,913 research outputs found

    Selection of a seventh spectral band for the LANDSAT-D thematic mapper

    Get PDF
    The author has identified the following significant results. Each of the candidate bands were examined in terms of the feasibility of gathering high quality imagery from space while taking into account solar illumination, atmospheric attenuation, and the signal/noise ratio achievable within the TM sensor constraints. For the 2.2 micron region and the thermal IR region, inband signal values were calculated from representative spectral reflectance/emittance curves and a linear discriminant analysis was employed to predict classification accuracies. Based upon the substantial improvement (from 78 t0 92%) in discriminating zones of hydrothermally altered rocks from unaltered zones, over a broad range of observation conditions, a 2.08-2.35 micron spectral band having a ground resolution of 30 meters was recommended

    Optimum thermal infrared bands for mapping general rock type and temperature from space

    Get PDF
    A study was carried out to determine quantitatively the number and locations of spectral bands required to perform general rock-type discrimination from spaceborne imaging sensors using only thermal infrared measurements. Beginning with laboratory spectra collected under idealized conditions from relatively well characterized, homogeneous samples, a radiative transfer model was employed to transform ground exitance values into the corresponding spectral radiance at the top of the atmosphere. Taking sensor noise into account analysis of these data revealed that three 1 micrometer wide spectral bands would permit independent estimators of rock-type and sample temperature from a satellite infrared multispectral scanner. This study, indicates that the location of three spectral bands at 8.1-9.1 micrometers, 9.5-10.5 micrometers and 11.0-12.0 micrometers, and the employment of appropriate preprocessing to minimize atmospheric effects makes it possible to predict general rock-type and temperature for a variety of atmospheric states and temperatures

    Toolboxes and handing students a hammer: The effects of cueing and instruction on getting students to think critically

    Full text link
    Developing critical thinking skills is a common goal of an undergraduate physics curriculum. How do students make sense of evidence and what do they do with it? In this study, we evaluated students' critical thinking behaviors through their written notebooks in an introductory physics laboratory course. We compared student behaviors in the Structured Quantitative Inquiry Labs (SQILabs) curriculum to a control group and evaluated the fragility of these behaviors through procedural cueing. We found that the SQILabs were generally effective at improving the quality of students' reasoning about data and making decisions from data. These improvements in reasoning and sensemaking were thwarted, however, by a procedural cue. We describe these changes in behavior through the lens of epistemological frames and task orientation, invoked by the instructional moves

    Non-Universal Gaugino Masses, CDMS, and the LHC

    Full text link
    We consider the possibility that the recently reported events at the CDMS-II direct dark matter detection experiment are the result of coherent scattering of supersymmetric neutralinos. In such a scenario we argue that non-universal soft supersymmetry breaking gaugino masses are favored with a resulting lightest neutralino with significant Higgsino and wino components. We discuss the accompanying signals which must be seen at liquid-xenon direct detection experiments and indirect detection experiments if such a supersymmetric interpretation is to be maintained. We illustrate the possible consequences for early discovery channels at the LHC via a set of benchmark points designed to give rise to an observed event rate comparable to the reported CDMS-II data.Comment: Typos corrected and references adde

    Anisotropy, disorder, and superconductivity in CeCu2Si2 under high pressure

    Full text link
    Resistivity measurements were carried out up to 8 GPa on single crystal and polycrystalline samples of CeCu2Si2 from differing sources in the homogeneity range. The anisotropic response to current direction and small uniaxial stresses was explored, taking advantage of the quasi-hydrostatic environment of the Bridgman anvil cell. It was found that both the superconducting transition temperature Tc and the normal state properties are very sensitive to uniaxial stress, which leads to a shift of the valence instability pressure Pv and a small but significant change in Tc for different orientations with respect to the tetragonal c-axis. Coexistence of superconductivity and residual resistivity close to the Ioffe-Regel limit around 5 GPa provides a compelling argument for the existence of a valence-fluctuation mediated pairing interaction at high pressure in CeCu2Si2.Comment: 12 pages, 7 figure
    • …
    corecore