235 research outputs found

    Virtual dielectric waveguide mode description of a high-gain free-electron laser I: Theory

    Full text link
    A set of mode-coupled excitation equations for the slowly-growing amplitudes of dielectric waveguide eigenmodes is derived as a description of the electromagnetic signal field of a high-gain free-electron laser, or FEL, including the effects of longitudinal space-charge. This approach of describing the field basis set has notable advantages for FEL analysis in providing an efficient characterization of eigenmodes, and in allowing a clear connection to free-space propagation of the input (seeding) and output radiation. The formulation describes the entire evolution of the radiation wave through the linear gain regime, prior to the onset of saturation, with arbitrary initial conditions. By virtue of the flexibility in the expansion basis, this technique can be used to find the direct coupling and amplification of a particular mode. A simple transformation converts the derived coupled differential excitation equations into a set of coupled algebraic equations and yields a matrix determinant equation for the FEL eigenmodes. A quadratic index medium is used as a model dielectric waveguide to obtain an expression for the predicted spot size of the dominant system eigenmode, in the approximation that it is a single gaussian mode.Comment: 14 page

    A holonomy characterisation of Fefferman spaces

    Full text link
    We prove that Fefferman spaces, associated to non--degenerate CR structures of hypersurface type, are characterised, up to local conformal isometry, by the existence of a parallel orthogonal complex structure on the standard tractor bundle. This condition can be equivalently expressed in terms of conformal holonomy. Extracting from this picture the essential consequences at the level of tensor bundles yields an improved, conformally invariant analogue of Sparling's characterisation of Fefferman spaces.Comment: AMSLaTeX, 15 page

    Prolongations of Geometric Overdetermined Systems

    Full text link
    We show that a wide class of geometrically defined overdetermined semilinear partial differential equations may be explicitly prolonged to obtain closed systems. As a consequence, in the case of linear equations we extract sharp bounds on the dimension of the solution space.Comment: 22 pages. In the second version, a comparison with the classical theory of prolongations was added. In this third version more details were added concerning our construction and especially the use of Kostant's computation of Lie algebra cohomolog

    Simulation of Coherent Diffraction Radiation Generation by Pico-Second Electron Bunches in an Open Resonator

    Get PDF
    In this report we present new approach for calculation of processes of diffraction radiation generation, storage and decay in an open resonator based on generalized surface current method. The radiation characteristics calculated using the developed approach were compared with those calculated using Gaussian-Laguerre modes method. The comparison shows reasonable coincidence of the results that allows to use developed method for investigation of more complicated resonators

    Local Unit Invariance, Back-Reacting Tractors and the Cosmological Constant Problem

    Full text link
    When physics is expressed in a way that is independent of local choices of unit systems, Riemannian geometry is replaced by conformal geometry. Moreover masses become geometric, appearing as Weyl weights of tractors (conformal multiplets of fields necessary to keep local unit invariance manifest). The relationship between these weights and masses is through the scalar curvature. As a consequence mass terms are spacetime dependent for off-shell gravitational backgrounds, but happily constant for physical, Einstein manifolds. Unfortunately this introduces a naturalness problem because the scalar curvature is proportional to the cosmological constant. By writing down tractor stress tensors (multiplets built from the standard stress tensor and its first and second derivatives), we show how back-reaction solves this naturalness problem. We also show that classical back-reaction generates an interesting potential for scalar fields. We speculate that a proper description of how physical systems couple to scale, could improve our understanding of naturalness problems caused by the disparity between the particle physics and observed, cosmological constants. We further give some ideas how an ambient description of tractor calculus could lead to a Ricci-flat/CFT correspondence which generalizes the AdS side of Maldacena's duality to a Ricci-flat space of one higher dimension.Comment: 20 pages, 2 figure

    Smooth metric measure spaces, quasi-Einstein metrics, and tractors

    Full text link
    We introduce the tractor formalism from conformal geometry to the study of smooth metric measure spaces. In particular, this gives rise to a correspondence between quasi-Einstein metrics and parallel sections of certain tractor bundles. We use this formulation to give a sharp upper bound on the dimension of the vector space of quasi-Einstein metrics, providing a different perspective on some recent results of He, Petersen and Wylie.Comment: 33 pages; final versio

    Current Exchanges for Reducible Higher Spin Multiplets and Gauge Fixing

    Get PDF
    We compute the current exchanges between triplets of higher spin fields which describe reducible representations of the Poincare group. Through this computation we can extract the propagator of the reducible higher spin fields which compose the triplet. We show how to decompose the triplet fields into irreducible HS fields which obey Fronsdal equations, and how to compute the current-current interaction for the cubic couplings which appear in ArXiv:0708.1399 [hep-th] using the decomposition into irreducible modes. We compare this result with the same computation using a gauge fixed (Feynman) version of the triplet Lagrangian which allows us to write very simple HS propagators for the triplet fields.Comment: 26 pages, 1 table; v3 some clarifications and references added, typos corrected. Published versio

    Holographic Description of Gravitational Anomalies

    Full text link
    The holographic duality can be extended to include quantum theories with broken coordinate invariance leading to the appearance of the gravitational anomalies. On the gravity side one adds the gravitational Chern-Simons term to the bulk action which gauge invariance is only up to the boundary terms. We analyze in detail how the gravitational anomalies originate from the modified Einstein equations in the bulk. As a side observation we find that the gravitational Chern-Simons functional has interesting conformal properties. It is invariant under conformal transformations. Moreover, its metric variation produces conformal tensor which is a generalization of the Cotton tensor to dimension d+1=4k1,kZd+1=4k-1, k\in Z. We calculate the modification of the holographic stress-energy tensor that is due to the Chern-Simons term and use the bulk Einstein equations to find its divergence and thus reproduce the gravitational anomaly. Explicit calculation of the anomaly is carried out in dimensions d=2d=2 and d=6d=6. The result of the holographic calculation is compared with that of the descent method and agreement is found. The gravitational Chern-Simons term originates by Kaluza-Klein mechanism from a one-loop modification of M-theory action. This modification is discussed in the context of the gravitational anomaly in six-dimensional (2,0)(2,0) theory. The agreement with earlier conjectured anomaly is found.Comment: 24 pages, Latex; presentation re-structured, new references adde
    corecore