6,341 research outputs found
Culture of urine specimens by use of chromID CPS Elite medium can expedite Escherichia coli identification and reduce hands-on time in the clinical laboratory
Urine is one of the most common specimen types submitted to the clinical microbiology laboratory; the use of chromogenic agar is one method by which the laboratory might expedite culture results and reduce hands-on time and materials required for urine culture analysis. The objective of our study was to compare chromID CPS Elite (bioMĂ©rieux), a chromogenic medium, to conventional primary culture medium for evaluation of urine specimens. Remnant urine specimens (n = 200) were inoculated into conventional media and into chromID CPS Elite agar (chromID). The time to identification and consumables used were documented for both methods. Clinically significant pathogen(s) were recovered from 51 cultures using conventional media, with Escherichia coli being the most frequently recovered organism (n = 22). The rate of exact uropathogen agreement between conventional and chromogenic media was 82%, while overall categorical agreement was 83.5% The time interval between plating and final organism identification was decreased with chromID agar versus conventional media for E. coli (mean of 24.4 h versus 27.1 h, P < 0.001). Using chromID, clinically significant cultures required less hands-on time per culture (mean of 1 min and 2 s [1:02 min]) compared to conventional media (mean of 1:31 min). In addition, fewer consumables (2.4 versus 3.3 sticks and swabs) and rapid biochemical tests (1.0 versus 1.9) were necessary using chromID versus conventional media. Notably, antimicrobial susceptibility testing demonstrated good overall agreement (97.4%) between the chromID and conventional media for all antibiotics tested. chromID CPS Elite is accurate for uropathogen identification, reduces consumable usage, and may expedite the identification of E. coli in clinical specimens
Comparing the yield of Staphylococcus aureus recovery with static versus agitated broth incubation
Given the lack of standardization of methodologies for microbial recovery from built environments, we sought to compare the yield of Staphylococcus aureus with a broth enrichment method when incubated in agitated versus static conditions. Five unique strains of S. aureus at five different concentrations were cultured to compare direct plating, agitated broth enrichment, and static broth enrichment culture methods. All samples were incubated at 35° in ambient air. The lowest concentration recovered across three replicates and five strains did not differ between culture methods (Fisher’s exact test, p=0.50); notably, recovery of S. aureus was equivalent between static and agitated broth incubation. When broth enrichment was used (both static and agitated), the burden of S. aureus growth was higher (by semiquantitative assessment of 4-quadrant streaking) compared to the direct plating culture method. Optimizing strategies for microbial recovery is essential, particularly in areas of lower biomass, given the paucity of research concerning microbial communities of built environments. The results of this study, in conjunction with other experiments investigating microbiomes of built environments, can help inform protocols for standardizing culturing methods within built environments
When good bugs go bad: Epidemiology and antimicrobial resistance profiles of Corynebacterium striatum, an emerging multidrug-resistant, opportunistic pathogen
ABSTRACT
Infections with
Corynebacterium striatum
have been described in the literature over the last 2 decades, with the majority being bacteremia, central line infections, and occasionally, endocarditis. In recent years, the frequency of
C. striatum
infections appears to be increasing; a factor likely contributing to this is the increased ease and accuracy of the identification of
Corynebacterium
spp., including
C. striatum
, from clinical cultures. The objective of this study was to retrospectively characterize
C. striatum
isolates recovered from specimens submitted as part of routine patient care at a 1,250-bed, tertiary-care academic medical center. Multiple strain types were recovered, as demonstrated by repetitive-sequence-based PCR. Most of the strains of
C. striatum
characterized were resistant to antimicrobials commonly used to treat Gram-positive organisms, such as penicillin, ceftriaxone, meropenem, clindamycin, and tetracycline. The MIC
50
for ceftaroline was >32 ÎĽg/ml. Although there are no interpretive criteria for susceptibility with telavancin, it appeared to have potent
in vitro
efficacy against this species, with MIC
50
and MIC
90
values of 0.064 and 0.125 ÎĽg/ml, respectively. Finally, as previously reported in case studies, we demonstrated rapid
in vitro
development of daptomycin resistance in 100% of the isolates tested (
n
= 50), indicating that caution should be exhibited when using daptomycin for the treatment of
C. striatum
infections.
C. striatum
is an emerging, multidrug-resistant pathogen that can be associated with a variety of infection types.
</jats:p
Research on physical and physiological aspects of visual optics in space flight
Physical and physiological aspects of visual optics in space fligh
Optimization of routine identification of clinically relevant gram-negative bacteria by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry and the bruker biotyper
Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) might complement and one day replace phenotypic identification of bacteria in the clinical microbiology laboratory, but there is no consensus standard regarding the requirements for its validation prior to clinical use in the United States. The objective of this study was to assess the preanalytical variables influencing Gram-negative identification by use of the Bruker Biotyper MALDI-TOF MS system, including density of organism spotting on a stainless steel target plate and the direct overlay of organisms with formic acid. A heavy smear with formic acid overlay was either superior or equivalent to alternative smear conditions. Microbiological preanalytical variables were also assayed, such as culture medium, growth temperature, and use of serial subculture. Postanalytical analysis included the application of modified species-level identification acceptance criteria. Biotyper identifications were compared with those using traditional phenotypic methods, and discrepancies were resolved with 16S rRNA gene sequencing. Compared to the recommended score cutoffs of the manufacturer, the application of optimized Biotyper score cutoffs for species-level identification increased the rate of identification by 6.75% for the enteric Gram-negative bacteria and 4.25% for the nonfermenting Gram-negative bacteria. Various incubation temperatures, growth medium types, and repeat subcultures did not result in misidentification. We conclude that the Bruker MALDI Biotyper is a robust system for the identification of Gram-negative organisms in the clinical laboratory and that meaningful performance improvements can be made by implementing simple pre- and postanalytical techniques
Topical decolonization does not eradicate the skin microbiota of community-dwelling or hospitalized adults
Topical antimicrobials are often employed for decolonization and infection prevention and may alter the endogenous microbiota of the skin. The objective of this study was to compare the microbial communities and levels of richness and diversity in community-dwelling subjects and intensive care unit (ICU) patients before and after the use of topical decolonization protocols. We enrolled 15 adults at risk for Staphylococcus aureus infection. Community subjects (n = 8) underwent a 5-day decolonization protocol (twice daily intranasal mupirocin and daily dilute bleach-water baths), and ICU patients (n = 7) received daily chlorhexidine baths. Swab samples were collected from 5 anatomic sites immediately before and again after decolonization. A variety of culture media and incubation environments were used to recover bacteria and fungi; isolates were identified using matrix-assisted laser desorption ionization–time of flight mass spectrometry. Overall, 174 unique organisms were recovered. Unique communities of organisms were recovered from the community-dwelling and hospitalized cohorts. In the community-dwelling cohort, microbial richness and diversity did not differ significantly between collections across time points, although the number of body sites colonized with S. aureus decreased significantly over time (P = 0.004). Within the hospitalized cohort, richness and diversity decreased over time compared to those for the enrollment sampling (from enrollment to final sampling, P = 0.01 for both richness and diversity). Topical antimicrobials reduced the burden of S. aureus while preserving other components of the skin and nasal microbiota
Comparison of chromogenic media for recovery of carbapenemase-producing enterobacteriaceae (CPE) and evaluation of CPE prevalence at a tertiary care academic medical center
We evaluated the performance characteristics of chromID CARBA and HardyCHROM Carbapenemase for the detection of carbapenemase-producing Enterobacteriaceae (CPE). A CPE prevalence study was conducted using chromID CARBA; this demonstrated that in low-prevalence settings, CPE screening agars may lack specificity, and confirmation of putative isolates is necessary
- …