
Washington University School of Medicine
Digital Commons@Becker

Open Access Publications

2013

Optimization of routine identification of clinically
relevant gram-negative bacteria by use of matrix-
assisted laser desorption ionization-time of flight
mass spectrometry and the bruker biotyper
Bradley A. Ford
Washington University School of Medicine in St. Louis

Carey-Ann D. Burnham
Washington University School of Medicine in St. Louis

Follow this and additional works at: http://digitalcommons.wustl.edu/open_access_pubs

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open
Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact engeszer@wustl.edu.

Recommended Citation
Ford, Bradley A. and Burnham, Carey-Ann D., ,"Optimization of routine identification of clinically relevant gram-negative bacteria by
use of matrix-assisted laser desorption ionization-time of flight mass spectrometry and the bruker biotyper." Journal of Clinical
Microbiology.51,5. 1412-1420. (2013).
http://digitalcommons.wustl.edu/open_access_pubs/2342

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Commons@Becker

https://core.ac.uk/display/70382717?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.wustl.edu?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F2342&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wustl.edu/open_access_pubs?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F2342&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wustl.edu/open_access_pubs?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F2342&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:engeszer@wustl.edu


  Published Ahead of Print 20 February 2013. 
10.1128/JCM.01803-12. 

2013, 51(5):1412. DOI:J. Clin. Microbiol. 
Bradley A. Ford and Carey-Ann D. Burnham
 
Spectrometry and the Bruker Biotyper

Time of Flight Mass−Ionization
esorptionby Use of Matrix-Assisted Laser D

Clinically Relevant Gram-Negative Bacteria
 Optimization of Routine Identification of

http://jcm.asm.org/content/51/5/1412
Updated information and services can be found at: 

These include:

REFERENCES
http://jcm.asm.org/content/51/5/1412#ref-list-1at: 

This article cites 34 articles, 24 of which can be accessed free

CONTENT ALERTS
 more»articles cite this article), 

Receive: RSS Feeds, eTOCs, free email alerts (when new

http://journals.asm.org/site/misc/reprints.xhtmlInformation about commercial reprint orders: 
http://journals.asm.org/site/subscriptions/To subscribe to to another ASM Journal go to: 

 on M
arch 8, 2014 by W

ashington U
niversity in S

t. Louis
http://jcm

.asm
.org/

D
ow

nloaded from
 

 on M
arch 8, 2014 by W

ashington U
niversity in S

t. Louis
http://jcm

.asm
.org/

D
ow

nloaded from
 

http://http://jcm.asm.org/content/51/5/1412
http://jcm.asm.org/content/51/5/1412#ref-list-1
http://jcm.asm.org/cgi/alerts
http://jcm.asm.org/cgi/alerts
http://journals.asm.org/site/misc/reprints.xhtml
http://journals.asm.org/site/subscriptions/
http://jcm.asm.org/
http://jcm.asm.org/
http://jcm.asm.org/
http://jcm.asm.org/


Optimization of Routine Identification of Clinically Relevant Gram-
Negative Bacteria by Use of Matrix-Assisted Laser Desorption
Ionization–Time of Flight Mass Spectrometry and the Bruker Biotyper

Bradley A. Ford,* Carey-Ann D. Burnham

Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA

Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) might complement and one day
replace phenotypic identification of bacteria in the clinical microbiology laboratory, but there is no consensus standard regard-
ing the requirements for its validation prior to clinical use in the United States. The objective of this study was to assess the pre-
analytical variables influencing Gram-negative identification by use of the Bruker Biotyper MALDI-TOF MS system, including
density of organism spotting on a stainless steel target plate and the direct overlay of organisms with formic acid. A heavy smear
with formic acid overlay was either superior or equivalent to alternative smear conditions. Microbiological preanalytical vari-
ables were also assayed, such as culture medium, growth temperature, and use of serial subculture. Postanalytical analysis in-
cluded the application of modified species-level identification acceptance criteria. Biotyper identifications were compared with
those using traditional phenotypic methods, and discrepancies were resolved with 16S rRNA gene sequencing. Compared to the
recommended score cutoffs of the manufacturer, the application of optimized Biotyper score cutoffs for species-level identifica-
tion increased the rate of identification by 6.75% for the enteric Gram-negative bacteria and 4.25% for the nonfermenting Gram-
negative bacteria. Various incubation temperatures, growth medium types, and repeat subcultures did not result in misidentifi-
cation. We conclude that the Bruker MALDI Biotyper is a robust system for the identification of Gram-negative organisms in the
clinical laboratory and that meaningful performance improvements can be made by implementing simple pre- and postanalyti-
cal techniques.

Matrix-assisted laser desorption ionization–time of flight
mass spectrometry (MALDI-TOF MS) employs soft ioniza-

tion to detect individual intact biomolecules within complex so-
lutions. Practical use of MALDI-TOF has been facilitated by the
development of matrices, such as �-cyano-4-hydroxycinnamic
acid (1). While the potential for the identification of bacteria by
their individual mass spectrometric “fingerprints” has long been
appreciated (2), the adoption of MALDI-TOF MS in clinical mi-
crobiology laboratories in the United States has been hindered
until recently by a lack of available platforms with databases of
bacterial whole-cell MALDI-TOF reference spectra.

Recent studies using the Bruker Biotyper MALDI-TOF MS
platform have revealed that this system might correctly identify
bacteria to the species level 95% of the time, with the remaining
5% comprising unidentified or erroneously identified isolates (3,
4). These studies invariably used Bruker’s recommended scoring
cutoffs (a Biotyper score of �2.0 for species-level identification
and �1.7 for genus-level identification) to define the confidence
with which a correct identification had been made. Alatoom and
colleagues (5) noted that the preparatory extraction of the pro-
tein fraction of Gram-positive organisms was necessary to ob-
tain the species-level identification score recommended by
Bruker. This raised questions of how often extraction would be
used in routine practice compared to spotting whole cells di-
rectly from culture medium onto MALDI-TOF target plates
and whether the cutoffs supplied by the manufacturer are op-
timal for all classes of bacteria.

Subtleties of the MALDI-TOF analytical techniques have the
potential to modulate performance. The objective of this study
was to validate the Bruker Biotyper system for clinical use in iden-
tifying Gram-negative enteric and non-glucose-fermenting or-

ganisms, while also assessing the impact of variables routinely en-
countered in the clinical laboratory. We focused on variables that
are encountered in routine clinical practice in order to derive a
comprehensive protocol for how Gram-negative clinical isolates
might be optimally identified by use of MALDI-TOF MS. An ac-
companying paper by McElvania TeKippe et al. (6) focuses on the
optimization of the Bruker Biotyper system for identification of
Gram-positive bacteria.

(This work was presented in part at the 22nd Annual European
Congress of Clinical Microbiology and Infectious Diseases, Lon-
don, England, April 2012.)

MATERIALS AND METHODS
Clinical isolates. The clinical isolates tested in this study were recovered
in routine clinical workflow from specimens submitted to the St. Louis
Children’s Hospital Microbiology Laboratory from April 2011 to August
2011; unusual isolates from freezer stocks were also used (Tables 1 and 2).
Cultures were processed per standard laboratory practices and, once pure
culture was obtained, enteric Gram-negative bacteria (EGNB) and non-
glucose-fermenting/fastidious Gram-negative bacteria (NFGNB) were
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TABLE 1 Identity and analysis of isolates for enteric Gram-negative bacteria

No. (%)
of isolates

Total no.
in genus

Isolates requiring (n):

Genus Species
16S rRNA gene
sequencinga

Repeat
analysis

Enterobacter 1 41
E. cloacae 34 * 2
E. aerogenes 1
E. gergoviae 4
E. amnigenus 1 1

Proteus 0 8
P. mirabilis 8

Klebsiella 0 42
K. oxytoca 14
K. pneumoniae 28

Citrobacter 0 21
C. freundii complex 20 *
C. braakii 1

Aeromonas 0 4
A. caviae 4

Shigella 0 7
S. sonnei 7

Plesiomonas 0 4
P. shigelloides 4 1

Morganella 0 1
M. morganii 1

Providencia 0 2
P. rettgeri 1
P. stuartii 1

Rahnella R. aquatilis 2 2

Escherichia 0 39
E. vulneris 1
E. coli 36
E. hermannii 2 2 2

Salmonella 10 10

Pantoea 9 12 8 9
P. agglomerans 2 2
P. ananatis 1

Serratia 0 15
S. marcescens 15

Total 208 208 10 (*) 17
Genera 14
Species 22

Extent of analysis performed
No extraction 191 (91.8)
Repeat analysis 17 (8.2)
16S sequencing 12 (5.8)

a Each asterisk indicates that one E. kobei and one C. freundii isolate (see Table 5) had correct MALDI-TOF identifications to the species level but were sequenced because of an
inadequate phenotypic identification. These did not require repeat analysis; by definition, the rest of the isolates for which 16S rRNA gene sequencing was performed required
repeat analysis. Other isolates (right column) were identified on repeat analysis, averting 16S rRNA gene sequencing.
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TABLE 2 Identity and analysis of isolates, non-glucose-fermenting Gram-negative bacteria

Genus Species
No. (%)
of isolates

Total no. for
the genus

Isolates requiring (n):

16S rRNA gene
sequencinga

Repeat
analysis

Achromobacter 5 17 4
A. denitrificans 1
A. xylosoxidans 11 1

Acinetobacter 9 14 2 3
A. radioresistens 1
A. ursingii 4 1

Alcaligenes 0 1
A. faecalis 1

Bordetella 0 2
B. holmesii 2 2

Brevundimonas 1 1

Burkholderia 0 23
B. cepacia 2
B. cenocepacia 1
B. gladioli 13
B. multivorans 6 *
B. pyrrocinia 1

Campylobacter 0 2
C. jejuni 2

Chryseobacterium 0 15
C. indologenes 15 7

Cupriavidus 1 1 *

Delftia 0 3
D. acidovorans 1
D. tsuruhatensis 2 2 2

Eikenella 1 5 1
E. corrodens 4 2

Gardnerella 0 5
G. vaginalis 5 1

Haemophilus 0 54
H. influenzae 25 1
H. parahaemolyticus 1
H. parainfluenzae 27 2
H. paraphrophilus 1 1

Herbaspirillum H. huttiense 1 1 *

Moraxella 1 7 1
M. catarrhalis 6

Neisseria 0 8
N. gonorrhoeae 3
N. lactamica 1
N. macacae 1
N. weaveri 3 *

Ochrobactrum 0 5
O. anthropi 2 1 1
O. intermedium 1
O. tritici 1 *

(Continued on following page)
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identified according to the standard operating procedures (SOPs) of our
laboratory. This included a variety of phenotypic, automated, and com-
mercial methods, such as Vitek 2 (bioMérieux, St. Louis, MO), Phoenix
(Becton-Dickson, Sparks, MD), API 20 NE (bioMérieux), and other man-
ual identification methods. In parallel to routine processing, colonies
were applied to a MALDI-TOF target as part of the normal workflow and
were batch processed for MS analysis at the end of the workday. MALDI-
TOF operators were blinded to the phenotypic identities of the organisms.
The Biotyper scoring system involves a pattern-matching algorithm that
queries a database of spectra to generate a score reflecting the probability
that an identification is correct. Per the recommendations of the manu-
facturer, a score of �2.0 is considered an accurate species-level identifi-
cation, a score from 1.7 to 1.99 is considered accurate to the genus level
and a score of �1.7 is considered unreliable. For our study, positive iden-
tifications were defined as those with a Biotyper score of �2.0 when ana-
lyzed in automatic mode under any of four spotting conditions (described
below); isolates with lower scores were reanalyzed in manual mode. If a
score of �2.0 was still not achieved, the sample was subcultured for re-
processing the next day. Failure to obtain an identification after replating
prompted chemical extraction of the isolate. Failure to identify the organ-

ism after extraction, or any MALDI-TOF/phenotypic discrepant identifi-
cation, prompted 16S rRNA gene sequencing of the isolate. Isolate char-
acteristics and the extent of analysis are summarized in Tables 1 and 2.

Individual MALDI-TOF analyses. Two hundred eight EGNB isolates
(97.6% from the regular clinical workflow) and 252 NFGNB isolates
(88.9% from the regular clinical workflow) were spotted using four meth-
ods for MALDI-TOF analysis as follows. For a “heavy smear,” individual
colonies were picked with the tip of a sterile wooden toothpick and spot-
ted with a circular motion onto a 96-spot reusable Bruker stainless steel
MALDI target plate (part no. 224990, Bruker Daltonics, Billerica, MA).
Without picking up more material from the original colony, the isolate
was spotted again to the adjacent spot on the MALDI target, for a “light
smear.” Heavy and light smears were repeated, allowed to dry, and over-
laid with 1 �l 100% formic acid. Once dry, all four spots were overlaid
with 1 �l of an �-cyano-4-hydroxycinnamic-acid matrix (part no.
255344, Bruker). Two microliters of bacterial test standard (BTS) (part
no. 255343, Bruker), prepared according to the instructions of the man-
ufacturer, were plated in duplicate for each run for calibration and quality
control purposes. Identifications were assigned using the Bruker Biotyper
software v3.0.

TABLE 2 (Continued)

Genus Species
No. (%)
of isolates

Total no. for
the genus

Isolates requiring (n):

16S rRNA gene
sequencinga

Repeat
analysis

Oligella O. ureolytica 1 1 1

Paracoccus P. yeei 1 1 1

Pasteurella 0 2
P. canis 1
P. multocida 1

Plesiomonas 0 2
P. shigelloides 2

Pseudomonas 0 40
P. aeruginosa 31 3
P. fluorescens 5 2 2
P. monteilii (putida group) 2
P. oryzihabitans 2 2

Rhizobium 0 3
R. radiobacter 2
R. larrymoorei 1 1 1

Roseomonas 2 4 2 2
R. mucosa 2 *

Sphingomonas S. paucimobilis 1 1 *

Stenotrophomonas S. maltophilia 35 35 2

Total 252 252 10 (*) 44
Genera 26
Species 44

Extent of analysis performed
No extraction 207 (82.1)
Repeat analysis 44 (17.5)
16S sequencing 17 (6.8)

a Each asterisk indicates that one isolate each of C. pauculus, B. multivorans, N. weaveri, S. paucimobilis, R. mucosa, H. huttiense, and O. tritici (see Table 5) had correct MALDI-TOF
identifications to the species level but were sequenced because of an inadequate or incorrect phenotypic identification. These did not require repeat analysis; by definition, the rest
of the isolates for which 16S rRNA gene sequencing was performed required repeat analysis. Other isolates (right column) were identified on repeat analysis, averting 16S rRNA
gene sequencing.
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Medium, temperature, and subculture studies. A subset of 24 di-
verse isolates of EGNB (Table 3, footnote a) were cultured on sheep
blood, MacConkey, chocolate, Hektoen enteric, blood with ampicillin,
and MacConkey-sorbitol agars and were analyzed as described above after
overnight incubation at 35°C (under 5% CO2 atmosphere for sheep blood
and chocolate agars and room air for all others). Twenty-five diverse iso-
lates of NFGNB (Table 3, footnote b) were cultured on sheep blood, Mac-
Conkey, chocolate, oxidation-fermentation polymyxin-bacitracin-lac-
tose (OFPBL), and Haemophilus isolation plate (HIP) agars and were
analyzed as described above after overnight incubation at 35°C (under the
atmosphere conditions described above).

For temperature studies, the isolates from the medium studies were
subcultured to MacConkey agar, incubated at 35°C in room air for 24 h,
and then incubated at 35°C, 4°C, and room temperature for 5 consecu-
tive days and analyzed using the four direct smear techniques de-
scribed above. For subculture studies, the isolates from the medium
studies were subcultured to MacConkey agar once per day for 5 con-
secutive days and were analyzed four times as described above on days
3, 4, and 5. All media for the medium, temperature, and subculture
studies were purchased from Remel (Lenexa, KS).

Organism extraction. For the extraction protocol (5, 7), a single large
colony was transferred to a microcentrifuge tube containing 300 �l of
molecular-grade water. To this, 900 �l of 100% ethanol was added, and
the solution was vortexed and centrifuged at 13,780 � g for 2 min. The
supernatant was decanted completely and the pellet was resuspended in
50 �l of 70% formic acid and vortexed, and then it was mixed with 50 �l
of 100% acetonitrile and vortexed again. This mixture was centrifuged,
and 1 �l of the supernatant was plated to a steel target, allowed to dry,
overlaid with matrix, and analyzed as described above. All reagents were
high-performance liquid chromatography (HPLC) grade or better.

16S rRNA gene sequencing and sequence analysis. Samples that were
not assigned a Biotyper score of �2.0 using any of the four direct smear
techniques, or those whose MALDI-TOF identification was discrepant
with the identification determined by traditional phenotypic methods,
were identified by use of standard 16S rRNA gene sequencing (8, 9). The
resulting sequences were aligned with the GenBank nonredundant/nucle-
otide collection (nr/nt) (10), Ribosomal Database Project (RDP) (11),
and GreenGenes databases (12). Interpretation of sequencing results was
in accordance with the criteria of the CLSI MM18-A guideline (9).

Supplemental testing and taxonomic resolution. For EGNB, the iso-
lates identified by MALDI-TOF as Escherichia coli were confirmed by an
evaluation of lactose fermentation and the use of a spot indole test; if an
isolate was lactose and indole negative, its identity was changed to Shigella
sp. (based on our local epidemiology) (13). Any isolate identified as

Raoultella ornithinolytica was tested for ornithine decarboxylase activity
(14) and, if negative, its identity was changed to Klebsiella oxytoca (13, 15).
Citrobacter and Enterobacter species identified by MALDI-TOF were
grouped as “Citrobacter freundii complex” or “Enterobacter cloacae com-
plex,” respectively, if it was appropriate in accordance with how these
organisms were routinely reported in the clinical laboratory.

For NFGNB, the genomovars of Burkholderia cepacia were grouped as
“B. cepacia complex” for reporting and interpretation purposes, and sub-
species within the Pseudomonas fluorescens, Pseudomonas putida, and
Pseudomonas aeruginosa groups were each reported to the group level,
respectively.

Statistical analysis. Tests of statistical significance (specified where
they are presented) were performed with Systat 12 software (Systat Soft-
ware, Inc., Chicago, IL). A P value of �0.05 was considered significant.

RESULTS
MALDI-TOF performance using manufacturer’s scoring cut-
offs. For EGNB, Biotyper scores for both direct light (average
score, 2.17) and heavy smear with formic acid overlay (average
score, 2.19) were statistically superior to those for standard direct
spotting with a heavy smear (average score, 2.07), according to a
repeated-measures analysis of variance (ANOVA) comparing all
possible combinations of groups (P � 0.01); the heavy smear with
formic acid group demonstrated the highest rate of identification
to the species level (Table 4). Notably, formic acid treatment re-
duced the number of unidentified isolates from 36 to 27. For
NFGNB, a Biotyper score for a light formic acid-treated smear was
statistically inferior (P � 0.01) to the heavy-smear formic acid-
treated isolates, but otherwise, all other pairs of treatments were
not statistically different by repeated-measures ANOVA compar-
ing the scores for all possible combinations of groups. Superior
scores for the heavy-smear formic acid-overlaid group were re-
flected by a higher rate of species-level identification using the
cutoff of the manufacturer (70.6% versus 63.9%, for heavy- and
light-smear formic acid-overlaid groups, respectively [Table 4]).
This is in contrast to EGNB, where formic acid treatment did not
result in a statistically different rate of identification for this organism
group (Table 4). There was only one misidentification in this data set,
which was in the formic acid-treated heavy-smear group of the
NFGNB. An isolate of Stenotrophomonas maltophilia was falsely iden-
tified as Cupriavidus pauculus, with a Biotyper score of 2.08.

TABLE 3 Temperature studies of enterica and non-glucose-fermentingb Gram-negative bacteria

Bacterial type and
identification

% of isolates, by temp and spotting conditionc

4°C Room temp 35°C

DIR FA DIR FA DIR FA

Enteric Gram-negative
Misidentified 0 0 0 0 0 0
Unidentified 31.2 25.0 6.3 6.3 6.3 6.3
Correct, score � 2.0 68.8 75.0 93.8 93.8 93.8 93.8

Nonfermenting Gram-negative
Misidentified 0.0 2.1 0.0 0.0 0.0 0.0
Unidentified 68.7 72.9 64.6 52.1 29.2 43.7
Correct, score � 2.0 31.3 25.0 35.4 47.9 70.8 56.3

a Twenty-four isolates consisting of the following (number of isolates in parentheses if more than one): A. caviae, C. freundii (2), E. aerogenes, E. cloacae (2), E. gergoviae, E. coli (5),
K. oxytoca (2), K. pneumoniae (3), M. morganii, P. mirabilis (2), Salmonella spp. (2), and S. marcescens (2).
b Twenty-five isolates consisting of the following (number of isolates in parentheses if more than one): A. xylosoxidans (2), B. cenocepacia, B. cepacia, B. gladioli (2), C. indologenes
(2), H. influenzae (2), H. parainfluenzae, M. catarrhalis (2), P. ananatis, P. canis, P. shigelloides, P. aeruginosa (5), and S. maltophilia (4).
c DIR, direct spotting without formic acid treatment; FA, formic acid treated. Data from heavy and light spotting conditions are pooled.
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Improved MALDI-TOF performance with optimized scor-
ing cutoffs. For EGNB, all isolates with a Bruker Biotyper score of
�1.9 were correctly identified to the species level. When the score
was �1.9, identifications were a mix of incorrect and correct, ren-
dering the identification “to the genus level” irrelevant in this
context. Therefore, we applied a single Bruker Biotyper cutoff for
a correct identification to the species level of 1.9, which resulted in
a rate of identification of 88.0% (a 1% improvement) for a formic
acid-treated heavy smear, a total improvement of 6.75% over the
use of Bruker’s recommended species-level score cutoff with a
non-formic-acid-treated smear. Nine of 16 additional isolates
identified were members of the E. cloacae group, which is geneti-
cally homogeneous (16) and is a difficult group to identify by use
of MALDI-TOF analysis (3).

For the NFGNB, formic acid treatment had no statistical effect
on scores and no appreciable effect on the rates of identification
when this group of organisms was analyzed together (Table 4).
Therefore, we sought to improve the rate of identification by di-
viding the NFGNB into “fastidious” isolates (those that do not
grow on MacConkey agar) and “nonfastidious” isolates (those
that do grow on MacConkey agar) and then reanalyzing the data
by constructing modified receiver operating curves for the heavily
smeared spots to choose a score for clinical reporting that maxi-
mized the rate of correct identifications while minimizing mis-
identifications (data not shown). The highest yield of identifica-
tions to the species level without any misidentifications was
achieved with a heavy smear without formic acid treatment and
with Biotyper score cutoffs of �2.0 for fastidious NFGNB and
�1.9 for nonfastidious NFGNB. This raised the rate of identifica-
tion to 77% for the NFGNB as a group, an improvement of 4.25%
over direct heavy spotting with a cutoff of �2.0.

Subanalysis of failed and discrepant identifications. Most
unidentified isolates were random, i.e., one of four spots of a set
failed to be identified. Seventeen EGNB samples required repeat
analysis, resulting in 5 additional identifications. Twelve isolates
were selected for 16S rRNA gene sequencing, as they were not
identified by use of MALDI-TOF (i.e., none of the four replicates
had a score of �2.0) and/or there was a discrepancy with the
phenotypic method or the isolate was not identified by use of
phenotypic means. Of these 12 samples, phenotypic identification
was always correct, while MALDI-TOF agreed with the pheno-
typic identification twice but failed to identify 8 Pantoea spp. and

2 Escherichia hermannii isolates (Table 5). A single C. freundii
isolate and a single E. cloacae isolate were identified correctly
by MALDI-TOF, phenotypic methods, and 16S sequencing
(Table 5). Of these isolates, all were present in the Biotyper 3.0
database except E. hermannii.

Repeat analysis of 45 NFGNB isolates (17.9%) resulted in 28
additional identifications. Seventeen isolates (6.8%) were then se-
lected for 16S sequencing, and of these, MALDI-TOF was correct
to the species level 7 times (Cupriavidus pauculus, Burkholderia
multivorans, Sphingomonas paucimobilis, Roseomonas mucosa,
Ochrobactrum tritici, Herbaspirillum huttiense, and Neisseria
weaveri), while phenotypic identification was correct 5 times, but
generally with less resolution when identified to the species level
(Cupriavidus sp., two Delftia spp., Sphingomonas sp., and Ochro-
bactrum anthropi); both were correct 4 times, and neither was
correct 5 times (Table 5). All organisms identified in this group
were present in the Biotyper database.

Medium, temperature, and subculture studies. A subset of 24
EGNB and 25 NFGNB isolates was analyzed on a number of dif-
ferent medium types to assess the impact of selective medium on
MALDI-TOF MS identification of Gram-negative bacteria. For
EGNB, performance on most media, with or without formic acid
treatment, was similar. Hektoen enteric medium resulted in a rate
of successful identification that was approximately 20% less than
rates of the other medium types, but there were no misidentifica-
tions on any medium type.

For NFGNB, organisms that did not grow on a particular
medium were excluded from analysis. There was one misiden-
tification from MacConkey agar (Burkholderia gladioli was
identified as Chryseobacterium indologenes by MALDI-TOF
MS, with a relatively high score of 2.33) with formic acid treat-
ment and a heavy smear. Otherwise, the rates of identification
ranged widely, from over 90% on sheep blood agar to less than
60% on OFPBL agar.

The isolates from the medium studies were subcultured to
MacConkey agar at 35°C for 24 h and then analyzed once after 5
days of further incubation at 4°C, 25°C, and 35°C to assess the
impact of growth temperature on the rate of MALDI-TOF MS
identification. The rate of identification decreased with decreasing
temperature. The rate of identification for EGNB was identical
from 35°C to room temperature (93.8%) and dropped by 25% at
4°C. This effect was more pronounced for NFGNB; the rate of

TABLE 4 Classification statistics using a cutoff of �2.0 for species identification and �1.7 to �2.0 for genus identification

Classification of identification

No. (%) of isolates, by method

Direct smear Smear with formic acid overlay

Heavy Light Heavy Light

Enteric Gram-negative bacteria
To species level 169 (81.3) 172 (82.7) 181 (87.0) 175 (84.1)
Only genus-level resolution 3 (1.4) 0 0 0
Unidentified 36 (17.3) 36 (17.3) 27 (13.0) 33 (15.9)
Misidentified 0 0 0 0

Nonfermenting Gram-negative bacteria
To species level 179 (71.0) 168 (66.7) 178 (70.6) 161 (63.9)
Only genus-level resolution 8 (3.2) 4 (1.6) 3 (1.2) 3 (1.2)
Unidentified 65 (25.8) 80 (31.7) 70 (27.8) 88 (34.9)
Misidentified 0 0 1 (0.4) 0
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identification at 35°C was cut in half at room temperature and
declined an additional 4% to 31.3% at 4°C (Table 3). In spite of the
low rate of identification, there was only one misidentification in
the heavy smear formic acid-treated NFGNB group at 4°C, which
again was a B. gladioli isolate that was called C. indologenes (Bio-
typer score, 2.08).

On serial subculture of 24 (EGNB) or 25 (NFGNB) isolates to
sheep blood agar once per day for 5 days, the mean scores and rates
of identification were essentially identical day-to-day (data not
shown). We were therefore able to calculate day-to-day scoring
coefficients of variation for the different spotting conditions,
which ranged from 3.0 to 5.6% for the enterics and 11.0 to 28.9%
for the nonfermenters.

DISCUSSION

Currently, phenotypic identification methods consist of a variety
of rapid benchtop, tubed, manual parallel, and automated parallel
biochemical tests that are used in concert with Gram stain to ob-
tain species-level identification. Identification of nonfermenting
Gram-negative bacteria is frequently protracted and expensive.
This difficulty is usually attributed to the mucoid nature of these
isolates and/or the fact that they may be biochemically inert (17–

19). This situation is possibly improved by MALDI-TOF, but be-
cause no system is currently cleared by the FDA, laboratories are
presented with only generic scoring cutoffs for species-level iden-
tification and a lack of a specific procedures or clear framework
providing detailed information about related technical nuances.

In building this framework for Gram-negative organisms, we
found that the rate of identification to the species level was 88%
for EGNB (heavy smear and formic acid overlay) and 77% for
NFGNB (heavy smear and no formic acid overlay) and our opti-
mized Biotyper cutoffs. While these rates are consistent with pub-
lished data for EGNB (4, 13, 20, 21) and NFGNB (22–24), this
study is unique in its assessment of preanalytical (temperature,
media type, and subculture), analytical (spotting density, formic
acid overlay, and database completeness), and postanalytical (Bio-
typer scoring cutoffs, additional biochemical testing required, and
sequencing analysis) variables and in its focus on the identification
of organisms directly from the routine clinical workflow. For this
reason, we believe the approach outlined here might serve as a
template for laboratories that are considering validation and op-
timization of MALDI-TOF systems.

Using our optimized procedure, the Bruker MALDI Biotyper
system made only two erroneous identifications across all studies,

TABLE 5 16S rRNA gene sequencing for enteric and nonfermenting Gram-negative bacteria

16S rRNA gene sequencing IDa MALDI-TOF IDa MALDI-TOF score
Organism in
Biotyper database? Phenotypic IDa

Enteric Gram-negative bacteria
Escherichia hermannii Not reliable 1.59 No E. hermannii
Escherichia hermannii Salmonella sp. 1.80 No E. hermannii
Citrobacter/Enterobacter/Pantoea C. freundiib 2.08 Yes Citrobacter sp.
Pantoea spp. K. oxytoca 1.78 Yes P. agglomerans
Pantoea spp. Not reliable 1.48 Yes P. agglomerans
Pantoea spp. R. aquatilis 1.73 Yes P. agglomerans
Pantoea spp. Not reliable 1.67 Yes P. agglomerans
Pantoea spp. Not reliable 1.29 Yes P. agglomerans
Pantoea spp. Not reliable 1.37 Yes P. agglomerans
Pantoea spp. Not reliable 1.34 Yes P. agglomerans
Pantoea spp. Not reliable 1.31 Yes P. agglomerans
E. cloacae E. kobeic 2.11 Yes E. cloacae complex

Nonfermenting Gram-negative bacteria
O. anthropi/lupini/tritici/cytisi O. tritici 1.71 Yes O. anthropi
Cupriavidus spp. C. pauculus 2.29 Yes Cupriavidus sp.
Acinetobacter spp. Not reliable 1.53 Yes Not reliable
Acinetobacter spp. Not reliable 1.49 Yes Acinetobacter sp.
B. cepacia complex B. multivorans 2.26 Yes Acinetobacter sp.
N. weaveri N. weaveri 2.12 Yes None
Roseomonas Not reliable 1.59 Yes None
Roseomonas Not reliable 1.43 Yes None
P. fluorescens group Not reliable 1.56 Yes P. putida
P. fluorescens group Not reliable 1.59 Yes P. putida
D. tsuruhatensis D. acidovorans 1.91 Yes Delftia sp.
Sphingomonas spp. S. paucimobilis 2.47 Yes Sphingomonas sp.
Roseomonas spp. R. mucosa 2.11 Yes None
Herbaspirillum spp. H. huttiense 2.33 Yes None
O. tritici O. tritici 2.09 Yes O. anthropi
R. larrymoorei Not reliable 1.39 Yes R. radiobacter
D. tsuruhatensis D. acidovorans 1.76 Yes Delftia sp.

a ID, identification.
b A second ID of C. youngae (score 2.02) was obtained, prompting rRNA gene sequencing.
c While E. kobei is in the E. cloacae complex, a second ID of E. asburiae (score of 2.07, also in the E. cloacae complex) was obtained, prompting rRNA gene sequencing that could not
distinguish these two species.
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which examined a total of 460 isolates four times each. Our rate of
identification to the species level falls between that of 16S rRNA
gene sequencing and that of standard phenotypic identification
systems, such as Vitek 2 or API 20 NE (17, 25), with MALDI-
TOF being markedly faster than either of these other methods.
An exception where phenotypic methods were superior was in
the identification of organisms that form durable, adherent, or
mucoid colonies, such as Pantoea agglomerans and mucoid
Pseudomonas spp.; this is consistent with previous findings that
mucoid organisms can represent a challenge for MALDI-TOF
analysis (7, 26, 27).

Many clinical specimen types, such as stool and respiratory
specimens, are plated to a variety of selective and differential me-
dia to minimize the overgrowth of normal flora and facilitate the
recovery of pathogens. The ability to analyze isolates directly on
these medium types, rather than subculturing to enriched me-
dium first, can improve the time it takes to identify these isolates.
It is intuitively understood that incubation on different media
may alter the MALDI-TOF spectral profile for a given isolate (26,
28, 29), and others have noted that Hektoen enteric medium re-
sults in poor performance or requires a full extraction (13, 30).
However, we found that this medium type, as well as other selec-
tive media, such as MacConkey and OFPBL, reduced the rate of
identification but induced no misidentifications, verifying that
MALDI-TOF analysis can be performed from primary subcul-
tures on selective agar.

A final practical consideration was the burden of additional
testing required in order to obtain reliable identifications from the
isolates recovered in routine workflow. Among Gram-negative
organisms, Shigella spp. and E. coli are indistinguishable from each
other using 16S rRNA gene sequencing or MALDI-TOF (20, 31,
32), which is attributed to the taxonomic proximity of these two
organisms (33); individual laboratories will need procedures to
reconcile this based on local epidemiology and the availability of
additional biochemical testing methods. An unanticipated but not
surprising (14) tendency to call K. oxytoca isolates R. ornithino-
lytica is easily remedied using ornithine decarboxylase.

In routine practice, the need to perform 16S rRNA sequenc-
ing on �6% of isolates might be balanced by the reduced need
for additional biochemical testing and the previously reported
low cost of consumables for MALDI-TOF testing (4, 27). Oth-
ers (34) have also found that a time savings of many days is
possible with biochemically inert nonfermenting Gram-nega-
tive organisms.

Bruker’s generic scoring cutoff of �2.0 for a species-level iden-
tification was overly conservative for EGNB and nonfastidious
NFGNB. When the threshold for species-level identification was
reduced to �1.9 for EGNB, this resulted in the identification of 17
additional isolates, 9 of which were Enterobacter spp. In clinical
use, unless other tests have been performed to identify an isolate as
Gram-negative enteric or nonfermenting Gram-negative, we sug-
gest that a cutoff of �1.9 be used for any Gram-negative organism
that grows on MacConkey agar and �2.0 be used for those that do
not or that were not grown on MacConkey agar in primary cul-
ture. From the findings of our medium, temperature, and subcul-
ture studies, we recommend that if an initial identification is �0.2
Biotyper scoring units below the cutoff, the isolate should be sub-
cultured to sheep blood agar, incubated at 35°C, and reanalyzed
the next day.

In conclusion, we provide a comprehensive assessment of the

major variables that influence MALDI-TOF MS identification of
clinically relevant Gram-negative bacteria. The major finding of
this study is that the use of a single spot overlaid with formic acid
and the application of less-stringent scoring cutoffs for EGNB and
nonfastidious NFGNB improved the rates of identification with-
out inducing misidentifications. As data acquisition, spectral da-
tabases, and algorithms for spectral pattern matching evolve, per-
formance is likely to improve and the specific failings of the
present system might be remedied. With simple procedural opti-
mizations, the rates of correct identification and misidentification
(higher and lower, respectively) for even the most fastidious or-
ganisms are superior to those using biochemical methods (35),
positioning MALDI-TOF to supplant them in the clinical micro-
biology laboratory.
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