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Topical Decolonization Does Not Eradicate the Skin Microbiota of
Community-Dwelling or Hospitalized Adults

Carey-Ann D. Burnham,a,b Patrick G. Hogan,a Meghan A. Wallace,b Elena Deych,c* William Shannon,c* David K. Warren,c

Stephanie A. Fritza

Departments of Pediatrics,a Pathology & Immunology,b and Medicine,c Washington University School of Medicine, St. Louis, Missouri, USA

Topical antimicrobials are often employed for decolonization and infection prevention and may alter the endogenous microbi-
ota of the skin. The objective of this study was to compare the microbial communities and levels of richness and diversity in
community-dwelling subjects and intensive care unit (ICU) patients before and after the use of topical decolonization protocols.
We enrolled 15 adults at risk for Staphylococcus aureus infection. Community subjects (n � 8) underwent a 5-day decoloniza-
tion protocol (twice daily intranasal mupirocin and daily dilute bleach-water baths), and ICU patients (n � 7) received daily
chlorhexidine baths. Swab samples were collected from 5 anatomic sites immediately before and again after decolonization. A
variety of culture media and incubation environments were used to recover bacteria and fungi; isolates were identified using ma-
trix-assisted laser desorption ionization–time of flight mass spectrometry. Overall, 174 unique organisms were recovered.
Unique communities of organisms were recovered from the community-dwelling and hospitalized cohorts. In the community-
dwelling cohort, microbial richness and diversity did not differ significantly between collections across time points, although the
number of body sites colonized with S. aureus decreased significantly over time (P � 0.004). Within the hospitalized cohort,
richness and diversity decreased over time compared to those for the enrollment sampling (from enrollment to final sampling,
P � 0.01 for both richness and diversity). Topical antimicrobials reduced the burden of S. aureus while preserving other compo-
nents of the skin and nasal microbiota.

Nosocomial infections pose significant clinical and financial
burdens to patients and health care systems (1, 2). Coloniza-

tion with potential pathogens serves as an endogenous source of
infection (e.g., central line-associated bloodstream infection with
Staphylococcus aureus) (3). For hospitalized patients, particularly
those in intensive care units (ICUs), decolonization with topical
antimicrobials, including chlorhexidine and/or mupirocin, has
been demonstrated to reduce the acquisition of antibiotic-resis-
tant microorganisms and the incidence of hospital-acquired
infections (4–6). While decolonization has traditionally been
employed in health care settings, the emergence of methicillin-
resistant S. aureus (MRSA) in the community and the resultant
epidemic of skin and soft tissue infections (SSTIs) have led to the
extrapolation of decolonization to outpatients to prevent recur-
rent SSTIs (7–10). As these broad-spectrum therapies are not
pathogen specific (e.g., for MRSA or Enterobacteriaceae), these
agents may suppress or eliminate other organisms on the skin and
nasal mucosa, thereby potentially disrupting the balance of the
microbiota, an important component of host defense against
pathogenic organisms (11, 12). Indeed, this dysbiosis has been
demonstrated for the intestinal microbiota following administra-
tion of oral antibiotics (13, 14).

Culture-independent molecular methods, including 16S
rRNA gene sequencing and metagenomic sequence analysis, have
become common approaches in studies evaluating the micro-
biome (15–18). While microbial culture has traditionally been
regarded as insensitive for detecting a majority of the microbiota,
molecular methods have informed augmented culture ap-
proaches, yielding enhanced recovery of these microorganisms
(19–26). Matrix-assisted laser desorption ionization–time of
flight mass spectrometry (MALDI-TOF MS) is a rapid and cost-
effective technique that utilizes proteomic profiling for organism
identification (27). MALDI-TOF MS facilitates the field of “cul-

turomics,” which employs a variety of conditions for microbial
cultivation, followed by identification by mass spectrometry (24).
MALDI-TOF MS provides excellent species-level resolution, even
for closely related Gram-positive bacteria that are major contrib-
utors to the skin microbiota. This process supplants traditional
limitations of 16S rRNA gene sequencing for closely related
species.

Using a culturomic approach, our objective was to discern the
identity and diversity of microorganisms recovered from multiple
anatomic niches in individuals at risk for infection with MRSA. As
a myriad of factors influence the skin and nasal microbiota, many
of which differ between outpatients and hospitalized patients, we
enrolled two distinct cohorts (community-dwelling individuals
and hospitalized individuals in an ICU) for this investigation. Ad-
ditionally, the decolonization regimens prescribed can vary. Thus,
within cohorts, we aimed to compare the richness and diversity of
microorganisms within individuals prior to and following the use
of topical antimicrobial decolonization measures.
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MATERIALS AND METHODS
Study populations. Two participant cohorts comprised of individuals at
risk for MRSA infection were enrolled. The community-dwelling cohort
consisted of 8 adults living with a child (aged 6 months to 13 years) re-
cently treated for a MRSA SSTI (these individuals represent a subset of
participants in a study of MRSA transmission dynamics among house-
holds of children with MRSA infections [28]). Community-dwelling in-
dividuals completed a 5-day decolonization protocol with twice-daily ap-
plication of 2% mupirocin (Teva Pharmaceuticals USA) to the anterior
nares and daily bathing in dilute bleach water (1/4 cup of bleach [Clorox;
The Clorox Company] to 1/4 bathtub-full of water), with soaking for �15
min (8, 29). The hospitalized cohort consisted of 7 adults in the 15-bed
cardiac care ICU at Barnes-Jewish Hospital (BJH) in St. Louis, MO. As a
component of routine clinical care, BJH ICU patients receive daily body
washes from the neck down with chlorhexidine-based soap (Exidine 4%;
Cardinal Health). Specifically, one 4-ounce bottle of 4% chlorhexidine-
based soap is added to 4 quarts of water in a bath basin (to a final concen-
tration of 0.125%, which has been proven to be effective at preventing
MRSA transmission and infection in ICUs [30]); this solution is applied to
the patient with a wash cloth and allowed to air dry (30, 31). These chlo-
rhexidine baths are discontinued upon transfer to the general medicine
unit. Although application of nasal mupirocin is not routinely prescribed
in the BJH ICU, two patients received one dose each of preoperative
mupirocin prophylaxis. A standardized case report form was used to col-
lect participant demographics, health history, antibiotic use, and hygiene
factors. Study procedures were approved by the Washington University
Institutional Review Board, and participants provided written informed
consent.

Specimen collection and processing. A standardized culturing proto-
col (BD Eswab; Becton Dickinson) was employed by study personnel to
obtain samples from five anatomic sites, including the anterior nares and
the subject’s dominant-side axilla, inguinal fold, dorsal surface of the fore-
arm, and ventral surface of the lower leg. For all sites except the anterior
nares, a 2-in. by 2-in. (5.1 � 5.1 cm) area was swabbed using a collection
template, with application of consistent pressure. Community-dwelling
participants were sampled at three time points: day 0 (prior to initiating
the 5-day decolonization protocol described above), day 5 (immediately
after performing the decolonization protocol), and day 30 (1 month after
completing the decolonization protocol). Hospitalized patients were sam-
pled up to five times (in the ICU or on the general medicine unit), de-
pending on their length of hospitalization, as follows: day 0 (upon ICU
admission, prior to the first chlorhexidine bath), day 3, day 7, upon dis-
charge from the ICU, and upon discharge from the hospital.

Microorganism identification and characterization. After vortexing,
each Eswab eluate was inoculated to 9 selective and differential media and
incubation environments, selected to support the growth of organisms
anticipated to be recovered from the nares and skin (see Table S1 in the
supplemental material) (11, 24, 32). A four-quadrant streaking method
was employed. The relative abundance of each morphotype recovered in
culture was approximated as follows: 0.5�, growth in broth only; 1�,
rare; 2�, few; 3�, moderate; and 4�, abundant. Distinct morphotypes
were selected for MALDI-TOF MS species identification as previously
described (33–37). In brief, yeast and bacteria were routinely identified
using the Vitek MS IVD v2.0 Knowledge Base according to the manufac-
turer’s protocols. Any isolates not identified using this method were ana-
lyzed using the Vitek MS SARAMIS database. For a very small number of
isolates, this approach was not successful and the isolate was analyzed
using the Bruker Biotyper RUO database. Any isolate that remained un-
identified was assigned a descriptive identity based on the Gram stain
reaction and growth conditions. Filamentous fungi were identified using
the Vitek MS v3.0 Knowledge Base following extraction and inactivation;
any isolate that was unidentified using this method was identified using
sequence-based analysis.

Disk diffusion testing was performed on all S. aureus isolates to detect
resistance to cefoxitin (as an indicator of methicillin resistance) and

mupirocin (38). Multiplex PCR was performed to detect mupA and
qacA/B, conferring high-level mupirocin resistance and chlorhexidine tol-
erance, respectively, as described elsewhere (39).

Statistical analysis. Richness is defined as the number of different
microbial species identified at a given collection site and time point (19,
32). Diversity is defined as a measure of community composition ac-
counting for the relative abundances of species as determined by Shan-
non’s diversity index (which considers species richness and evenness) (32,
40). Shannon’s diversity index was calculated based on the relative abun-
dance of each morphotype recovered in culture.

To evaluate trends in richness over time and across body sites, with
accounting for correlation within subjects, repeated-measures GEE mod-
els assuming a Poisson distribution were used; similarly, for Shannon’s
diversity index, repeated-measures mixed models assuming a normal dis-
tribution were deployed. To assess the correlation between S. aureus and
other relevant bacteria, with accounting for within-subject correlation,
repeated-measures log-linear models were utilized, with adjustments for
body site and time. In log-linear models, the presence of the two taxa is
assessed simultaneously, with checks for the effect of the presence of one
on the presence of the other. To compare skin microbial compositions at
different time points, the numbers of body sites colonized with various
organisms per subject over time were analyzed using related-samples
Friedman’s two-way analysis of variance by ranks. Analyses were per-
formed with R statistical software, version 3.2, and SPSS 22 for Windows
(IBM SPSS, Chicago, IL).

RESULTS
Participants and microbiology. The overall study population was
comprised of 15 participants with a median age of 43 years (range,
26 to 66 years). Ten (67%) participants were female, seven (47%)
were Caucasian, and six (40%) had experienced an SSTI in the
previous year.

Overall, 174 unique organisms representing 65 genera and 158
species were identified: 137 organisms from the community-
dwelling cohort and 99 from the hospitalized cohort. Sixty-two
(36%) of the organisms were shared between the two cohorts; 75
(43%) were unique to the community-dwelling cohort (notably
Klebsiella pneumoniae and Staphylococcus pseudintermedius), and
37 (21%) were unique to the hospitalized cohort (notably Clos-
tridium difficile and Pseudomonas aeruginosa). In addition to the
Gram-positive organisms we expected to find (e.g., Staphylococcus
spp., Streptococcus spp., Corynebacterium spp., and Propionibacte-
rium spp.), many participants were also colonized with enteric
Gram-negative bacteria and fungi (e.g., Aspergillus spp. and
dematiaceous fungi) (Table 1). The most commonly recovered
taxa were Staphylococcus epidermidis, Staphylococcus aureus, Pro-
pionibacterium acnes, Corynebacterium tuberculostearicum, Pro-
pionibacterium avidum, Enterococcus faecalis, Staphylococcus
hominis, Bacillus spp., Finegoldia magna, and Staphylococcus lug-
dunensis. Twenty species of Staphylococcus, 4 species of Propi-
onibacterium, and 14 species of Corynebacterium were identified.
Anaerobic bacteria were recovered from all 15 subjects and 168 of
225 (75%) sites sampled.

Characteristics and microbiota of community-dwelling par-
ticipants. The community-dwelling cohort (n � 8) had a median
age of 33 years (range, 26 to 43 years). Five (63%) participants
were female, five (63%) were Caucasian, and five (63%) had ex-
perienced an SSTI in the previous year. Two (25%) community-
dwelling participants had taken systemic antibiotics (ciprofloxa-
cin and trimethoprim-sulfamethoxazole) in the month prior to
study enrollment; two participants were taking systemic antibiot-
ics at the time of sample collection (ciprofloxacin and trim-
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ethoprim-sulfamethoxazole) (indicated by a capsule graphic in
the figures).

For community-dwelling participants, the median number
of distinct taxa (i.e., richness) across all body sites combined
was 21 (interquartile range [IQR], 13.75 to 26.5) at enrollment,
17.5 (IQR, 15.25 to 26.75) at day 5, and 20 (IQR, 14.25 to 26) at
day 30 (Table 2). Richness did not differ significantly between

sample collections across time points (P � 0.48) (see Fig. S1 in
the supplemental material). Richness did differ across body
sites (P � 0.01), with the largest number of taxa recovered
from the inguinal fold and the lowest from the axilla. Specifi-
cally, the inguinal fold richness was significantly greater than
that of the axilla, anterior nares, and leg (P � 0.01 for each
comparison).

TABLE 1 Comparison of skin microbial compositions at different time pointsa

Organism

Median no. (IQR) [range] of body sites colonized per subject

Community-dwelling cohort Hospitalized cohort

Enrollment (n � 8) Day 5 (n � 8) Day 30 (n � 8)
Enrollment
(n � 7) ICU (n � 5)

General
medicine unit
(final) (n � 5)

Fungi 0 (0–1.75) [0–3] 0 (0–1.5) [0–3] 0 (0–0) [0–3] 0 (0–2) [0–2] 0 (0–1) [0–2] 0 (0–1) [0–1]
Aspergilli 0 (0–0.75) [0–1] 0 (0–0.75) [0–1] 0 (0–0) [0–1] 0 (0–0) [0–2] 0 (0–0) [0–0] 0 (0–0) [0–0]
Black mold 0 (0–0) [0–3] 0 (0–0) [0–1] 0 (0–0) [0–1] 0 (0–0) [0–1] 0 (0–0) [0–0] 0 (0–0) [0–0]
Yeast 0 (0–0) [0–0] 0 (0–0) [0–0] 0 (0–0) [0–0] 0 (0–0) [0–1] 0 (0–1) [0–2] 0 (0–1) [0–1]

Bacteria 5 (5–5) [4–5] 5 (5–5) [4–5] 5 (5–5) [5–5] 5 (5–5) [4–5] 5 (4–5) [3–5] 5 (5–5) [5–5]
Gram-positive rods 5 (4–5) [3–5] 5 (3.5–5) [2–5] 4.5 (4–5) [3–5] 4 (2–5) [2–5] 3 (2.5–5) [2–5] 4 (1.5–4.5) [1–5]
Gram-positive cocci 5 (5–5) [4–5] 5 (4.25–5) [4–5] 5 (5–5) [4–5] 5 (5–5) [4–5] 5 (3.5–5) [3–5] 5 (4–5) [4–5]
Aerobes 5 (5–5) [4–5] 5 (4.25–5) [4–5] 5 (5–5) [5–5] 5 (5–5) [4–5] 5 (4–5) [3–5] 5 (4–5) [4–5]

Gram-negative aerobes 1.5 (0–2) [0–5] 1 (0–1.75) [0–5] 1 (0–1) [0–2] 1 (0–4) [0–5] 0 (0–2.5) [0–3] 1 (0.5–1.5) [0–2]
Enterobacteriaceae 0 (0–1.75) [0–3] 0.5 (0–1) [0–2] 0 (0–0.75) [0–1] 0 (0–1) [0–2] 0 (0–1.5) [0–2] 1 (0.5–1.5) [0–2]
Nonfermenting bacteria 0 (0–0) [0–0] 0 (0–0) [0–1] 0 (0–0.75) [0–2] 0 (0–1) [0–5] 0 (0–0.5) [0–1] 0 (0–0) [0–0]
Fastidious bacteria 0.5 (0–1) [0–2] 0 (0–0) [0–1] 0 (0–0) [0–1] 0 (0–1) [0–1] 0 (0–0) [0–0] 0 (0–0.5) [0–1]

Gram-positive aerobes 5 (5–5) [4–5] 5 (4.25–5) [4–5] 5 (5–5) [5–5] 5 (5–5) [4–5] 5 (4–5) [3–5] 5 (4–5) [4–5]
Cocci 5 (5–5) [4–5] 5 (4.25–5) [4–5] 5 (5–5) [4–5] 5 (5–5) [4–5] 5 (3.5–5) [3–5] 5 (4–5) [4–5]

S. aureus 3 (2.25–4) [1–4] 1.5 (1–3.5) [1–5] 0.5 (0–1.75)b [0–3] 0 (0–2) [0–2] 2 (0–4.5) [0–5] 2 (0–3) [0–3]
Other Staphylococcus spp. 5 (4.25–5) [4–5] 5 (4.25–5) [4–5] 5 (4.25–5) [4–5] 5 (5–5) [4–5] 5 (3.5–5) [3–5] 5 (4–5) [4–5]
Enterococcus spp. 0 (0–0.75) [0–3] 0 (0–2.5) [0–3] 1.5 (0–2) [0–4] 2 (0–3) [0–4] 4 (0–4) [0–4] 3 (0–4.5) [0–5]
Streptococcus-like bacteria 1 (1–1.75) [0–3] 1 (0.25–2.75) [0–4] 2 (1–2) [0–3] 1 (0–3) [0–3] 1 (0–2) [0–3] 1 (0–1.5) [0–2]

Rods 2.5 (2–4) [1–5] 3.5 (2–4.75) [1–5] 3.5 (2.25–4.75) [2–5] 3 (2–4) [0–5] 2 (2–4) [2–5] 2 (0.5–2) [0–2]
Corynebacterium spp. 1.5 (0.25–4) [0–5] 2 (1–4) [0–4] 2.5 (1.25–4) [1–4] 3 (2–4) [0–5] 1 (0.5–3) [0–4] 1 (0.5–1.5) [0–2]
Spore-forming bacteria 1 (1–2) [0–5] 2 (0.25–3.75) [0–5] 2.5 (1–4.5) [0–5] 0 (0–1) [0–1] 1 (0.5–2) [0–2] 0 (0–1) [0–1]

Bacillus spp. 1 (1–2) [0–5] 2 (0.25–3.75) [0–5] 2.5 (1–4.5) [0–5] 0 (0–0) [0–1] 1 (0.5–2) [0–2] 0 (0–1) [0–1]
Other spore-forming bacteria 0 (0–0) [0–1] 0 (0–0) [0–1] 0 (0–0) [0–0] 0 (0–1) [0–1] 0 (0–0.5) [0–1] 0 (0–0) [0–0]

Anaerobes 4 (3.25–4.75) [2–5] 5 (3.25–5) [2–5] 3.5 (3–5) [1–5] 4 (3–4) [2–5] 4 (2–4.5) [1–5] 4 (2.5–4.5) [1–5]
Clostridium/spore-forming bacteria 0 (0–0) [0–0] 0 (0–0) [0–1] 0 (0–0) [0–2] 0 (0–1) [0–1] 0 (0–1) [0–1] 0 (0–0.5) [0–1]
Propionibacterium spp. 4 (2.25–4) [2–5] 3.5 (2–4.75) [1–5] 3 (1.5–3.75) [1–4] 2 (1–4) [0–5] 1 (1–3.5) [1–4] 3 (0.5–4.5) [0–5]
Other non-spore-forming bacteria 2 (0.25–2.75) [0–3] 2 (0.25–4.75) [0–5] 2 (0.5–3) [0–3] 1 (0–4) [0–4] 3 (0.5–4) [0–5] 1 (0–2.5) [0–3]

a Abbreviations: IQR, interquartile range (25th to 75th percentiles); ICU, intensive care unit.
b P � 0.004 across samplings within community-dwelling participants by related-samples Friedman’s two-way analysis of variance by ranks; for the remaining organisms, there was
not a statistically significant change in the number of body sites colonized over time.

TABLE 2 Sample richness at each body site over timea

Site

Median no. of species (IQR) [range]

Community-dwelling cohort Hospitalized cohort

Enrollment (n � 8) Day 5 (n � 8) Day 30 (n � 8) Enrollment (n � 7) ICU (n � 5)
General medicine
unit (final) (n � 5)

Axilla 5 (3.25–5) [1–11] 4 (2–5.75) [0–8] 3.5 (1.25–5.75) [1–7] 5 (3–7) [2–10] 5 (3–6.5) [3–7] 4 (2–6.5) [1–8]
Forearm 8 (6.25–9) [6–10] 7.5 (6–10.25) [4–13] 6.5 (5.25–9.75) [4–15] 6 (5–7) [4–10] 5 (1–6.5) [0–7] 4 (3–6.5) [2–7]
Inguinal fold 10 (4.75–13) [4–15] 8 (5.25–11) [4–13] 7 (6.25–10.75) [6–14] 5 (4–13) [0–15] 6 (2–9) [2–10] 7 (2–8) [1–9]
Nares 5.5 (4.25–8) [1–10] 7 (3.75–9.25) [3–10] 7 (4.5–9.5) [4–10] 6 (5–7) [1–7] 7 (4.5–7) [4–7] 4 (2.5–7) [1–8]
Shin 7 (5.25–8) [3–10] 6.5 (2.25–10.25) [2–11] 6 (4.25–6.75) [1–9] 6 (4–6) [2–9] 3 (1–6.5) [0–8] 3 (1.5–3) [1–3]
All sites 21 (13.75–26.5) [11–27] 17.5 (15.25–26.75) [14–34] 20 (14.25–26) [11–28] 16 (14–24) [10–29] 12 (10–17.5) [9–20] 15 (7.5–15.5) [5–16]
a Abbreviations: IQR, interquartile range (25th to 75th percentiles); ICU, intensive care unit. Note that within the community-dwelling cohort, richness did not differ significantly
between collections across time points in a repeated-measures model (P � 0.48). Within the hospitalized cohort, richness decreased over time compared to that for the enrollment
sampling, with a trend for lower richness at the second ICU sampling (after initiation of chlorhexidine bathing; P � 0.08) and significantly lower richness at the third sampling
(after discharge from the ICU to the general medicine unit; P � 0.01).

Effect of Decolonization on Nasal and Skin Microbiota
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For community-dwelling participants, the mean (� standard
deviation) Shannon’s diversity index across all body sites com-
bined was 1.71 (�0.55) at enrollment, 1.65 (�0.52) at day 5, and
1.61 (�0.61) at day 30 (Table 3). Diversity did not differ signifi-
cantly between samplings across time points (P � 0.71) (see Fig.
S2 in the supplemental material). The inguinal fold had the most
diversity, which was significantly greater than that of the axilla and
anterior nares (P � 0.01 and P � 0.05, respectively); there was a
trend for greater diversity in the inguinal folds than on the shin
(P � 0.08). The axilla had the least diversity.

The composition of skin flora for each body site over time is
displayed in Fig. 1A for one representative community-dwelling
participant. The core Gram-positive flora (e.g., coagulase-nega-
tive staphylococci and Corynebacterium spp.) were relatively con-
sistent over time and across body sites, while the accessory bacteria
(e.g., Enterobacteriaceae, enterococci, and anaerobes) were more
variable. The composition of nasal flora for all community-dwell-
ing participants over time is displayed in Fig. 1B. While the core
Gram-positive organisms within the nares were well represented
across all individuals, the accessory bacteria were more similar
within individuals over time than between individuals.

Characteristics and microbiota of hospitalized participants.
The hospitalized cohort (n � 7) had a median age of 56 years
(range, 47 to 66 years). Five (71%) patients were female, two
(29%) were Caucasian, and one (14%) had experienced an SSTI in
the previous year. Four (57%) hospitalized patients had taken
systemic antibiotics in the month prior to study enrollment; five
patients were receiving at least one systemic antibiotic (up to four
antibiotics per sampling) at �1 sampling time points (indicated
by a capsule graphic in the figures).

For the hospitalized cohort, the median richness over all body
sites combined was 16 (IQR, 14 to 24) at enrollment, 12 (IQR, 10
to 17.5) at the second ICU sampling, and 15 (IQR, 7.5 to 15.5)
after discharge to the general medicine unit (Table 2). Within the
hospitalized cohort, richness decreased over time compared to
that of the enrollment sampling, with a trend for lower richness at
the second ICU sampling (after initiation of chlorhexidine bath-
ing; P � 0.08) and significantly lower richness at the third sam-
pling (after discharge from the ICU to the general medicine unit;
P � 0.01) (see Fig. S3 in the supplemental material). There was a
trend for differing richness levels across body sites overall (P �
0.06); the inguinal fold again had the highest richness, and the shin
had the lowest richness.

For the hospitalized cohort, the mean (� standard deviation)
Shannon’s diversity index over all body sites combined was 1.61
(�0.50) at enrollment, 1.43 (�0.48) at the second ICU sampling,
and 1.16 (�0.64) after discharge to the general medicine unit (Ta-
ble 3). Diversity decreased over time, with a trend for less diversity
at the second ICU collection (after initiation of chlorhexidine
bathing; P � 0.09) and significantly less diversity at the third col-
lection (after ICU discharge to the general medicine unit; P �
0.01) (see Fig. S4 in the supplemental material). The inguinal fold
had the most diversity and the shin the least diversity, though
these differences were not statistically significant.

The composition of skin flora for each body site over time is
displayed in Fig. 1C for one representative hospitalized patient;
while the overall Staphylococcus spp. were maintained across ana-
tomic sites and time, the accessory microbiota were less variable
over time than those in the community-dwelling participant (Fig.
1A). Note that Propionibacterium spp. comprised a larger portion
of the microbiota in the hospitalized patient than in the commu-
nity participant (Fig. 1C and A, respectively). The composition of
inguinal fold flora for all hospitalized participants over time is
displayed in Fig. 1D.

Relationships between S. aureus and other microbes. S. au-
reus was recovered from 13 participants (all eight community-
dwelling and five hospitalized subjects) at �1 time points over the
study period. Of the 71 S. aureus isolates available for susceptibil-
ity testing, 25 (35%) isolates (from seven participants) were
MRSA. None of the isolates exhibited mupirocin resistance; two
isolates, both of which were methicillin-susceptible S. aureus
(MSSA) (one from a community-dwelling and one from a hospi-
talized participant), possessed genes conferring chlorhexidine tol-
erance (qacA/B) (Fig. 2). Of six community-dwelling participants
colonized with S. aureus in the nares at enrollment, two (colonized
with MRSA) remained colonized at all three samplings despite
application of mupirocin, while four participants (one with
MRSA and three with MSSA) were decolonized (Fig. 2A).

Microbial richness and diversity within each cohort over time
and across body sites (detailed above) were also evaluated in the
context of S. aureus; adjusting for the presence of S. aureus did not
affect the richness or diversity models. The relationships between
S. aureus and other relevant organisms (i.e., inhibition of or coex-
istence with S. aureus by other components of the microbiota)
were evaluated, with adjustments for multiple body sites within an
individual across all time points. In both community-dwelling

TABLE 3 Sample diversity at each body site over timea

Site

Mean Shannon’s diversity index � SD

Community-dwelling cohort Hospitalized cohort

Enrollment (n � 8) Day 5 (n � 8) Day 30 (n � 8) Enrollment (n � 7) ICU (n � 5)
General medicine unit
(final) (n � 5)

Axilla 1.31 � 0.63 1.26 � 0.46 0.98 � 0.70 1.43 � 0.46 1.45 � 0.43 1.17 � 0.74
Forearm 1.99 � 0.20 1.90 � 0.38 1.88 � 0.41 1.74 � 0.26 1.43 � 0.54 1.33 � 0.42
Inguinal fold 2.03 � 0.49 1.87 � 0.39 2.00 � 0.33 1.92 � 0.60 1.34 � 0.69 1.34 � 0.84
Nares 1.44 � 0.63 1.62 � 0.45 1.69 � 0.38 1.45 � 0.64 1.60 � 0.31 1.21 � 0.75
Shin 1.79 � 0.37 1.56 � 0.69 1.50 � 0.64 1.58 � 0.45 1.31 � 0.57 0.76 � 0.46
All sites 1.71 � 0.55 1.65 � 0.52 1.61 � 0.61 1.61 � 0.50 1.43 � 0.48 1.16 � 0.64
a Abbreviations: SD, standard deviation; ICU, intensive care unit. Note that within the community-dwelling cohort, diversity did not differ significantly between samplings across
time points (P � 0.71) in a repeated-measures model. Within the hospitalized cohort, diversity decreased over time, with a trend for less diversity at the second ICU collection
(after initiation of chlorhexidine bathing; P � 0.09) and significantly less diversity at the third collection (after ICU discharge to the general medicine unit; P � 0.01).
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and hospitalized populations, the presence of S. aureus was inde-
pendent of colonization with S. epidermidis, Propionibacterium
spp., Enterococcus spp., or Enterobacteriaceae. The presence of
these organisms for each participant at each body site over time is
depicted in Fig. 2. In both cohorts, colonization with these organ-
isms was relatively consistent over time, despite decolonization
efforts and, for some participants, administration of systemic an-
tibiotics. Note that in the community-dwelling cohort, the num-
ber of body sites colonized with S. aureus significantly decreased
over time (P � 0.004) (Table 1 and Fig. 2A).

DISCUSSION

Given the effectiveness of decolonization in infection prevention
across broad study populations, the practice of topical antimicro-
bial application has become common in health care and commu-
nity settings (4, 5, 8, 9). While the outcomes of these decoloniza-
tion studies have focused on reducing the colonization burden
and infection incidence with a specific organism, the overall com-
munity composition of the skin microbiota has not been evalu-

ated. These topical antimicrobials may result in a modulation of
the normal skin microbiota, accommodating both the presence
and prosperity of potential pathogens. Furthermore, a reduction
in microbiome diversity has been associated with inflammatory
skin disorders (41).

Although many studies evaluating microbial communities
have applied a genomic approach, culturomics is emerging as a
robust technique for detailed microbial identification to the spe-
cies level (19–26). As demonstrated herein, this level of detail is
especially important for the skin and nasal flora, where closely
related Gram-positive species predominate. Sequencing reference
databases are less comprehensive for taxa common to these body
niches than for taxa comprising the gut microbiota. Furthermore,
depending on the specific sequencing technique used and/or the
portion of the 16S rRNA gene evaluated, important taxonomic
groups, such as Propionibacterium spp., may be underestimated
(16). Using our culturomic approach, we were able to recover and
identify a wide variety of bacteria with high species-level resolu-
tion, including 20 staphylococcal species and 14 species of Coryne-

FIG 1 Skin microbiota. The height of each color within each bar represents the relative abundance of the corresponding taxon within each sample. A red and
white “capsule” symbol represents a participant who was taking systemic antibiotics at the time of sampling. No growth, no organisms were cultivated from the
sample. D/C, discharge. (A) Community-dwelling participant (ID 2). The data show the skin microbiota at each body site and time point for one community-
dwelling participant. (B) Community-dwelling cohort anterior nares. The data show the nasal microbiota for all community-dwelling participants at each time
point. (C) Hospitalized patient (ID 13). The data show the skin microbiota at each body site and time point for one hospitalized patient. (D) Hospitalized cohort
inguinal folds. The data show the inguinal fold microbiota for all hospitalized patients at each time point.
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bacterium. Additionally, we recovered fungi from several partici-
pants, which would not have been identified by 16S rRNA gene
sequencing. With that said, the genera commonly recovered in
this study mirror those frequently encountered using 16S rRNA
gene sequencing or metagenomic approaches to interrogation of
the skin microbiota (16, 17, 32).

In the present study, unique communities of organisms were
recovered from the hospitalized and community participants,
which is an important consideration in interpreting similar inves-

tigations, as findings from one population may not be generaliz-
able. In our cohort of hospitalized patients who were bathed daily
with chlorhexidine, the microbial richness and diversity decreased
over time, a finding which may be affected by use of broad-spec-
trum systemic antibiotics and medical and surgical interventions
occurring concomitantly with topical antisepsis. Similarly, in a
study of adult ICU patients in France, microbial diversity was
lower among patients receiving chlorhexidine body washes than
among those bathed with soap and water (19). Among the mem-

FIG 1 continued
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bers of our community-dwelling cohort, although adherence to
the prescribed decolonization protocol was high (data not
shown), the richness and diversity of the microbiota did not
change significantly upon performance of the 5-day decoloniza-
tion regimen with intranasal mupirocin application and bleach-
water baths, although it is important that these indices do not
discern the specific organisms present. Additionally, while the
burden of S. aureus (i.e., number of body sites colonized) was

reduced following decolonization, topical antimicrobials did not
eradicate or significantly reduce the burden of other components
of the microbiota.

In both the community-dwelling and hospitalized cohorts, mi-
crobial richness and diversity differed significantly between ana-
tomic niches. In the community-dwelling population, the axilla
yielded the lowest richness and diversity (which may perhaps be
attributed to additional exogenous factors, such as deodorant

FIG 2 Presence of S. aureus, S. epidermidis, Enterococcus spp., Propionibacterium spp., and Enterobacteriaceae at each body site over time. A red and white
“capsule” symbol represents a participant who was taking systemic antibiotics at the time of sampling. (A) Community-dwelling cohort. (B) Hospitalized cohort.

Effect of Decolonization on Nasal and Skin Microbiota

December 2016 Volume 60 Number 12 aac.asm.org 7309Antimicrobial Agents and Chemotherapy

http://aac.asm.org


use), while the shin was the site with the lowest richness and di-
versity in the hospitalized cohort. Among both cohorts, the ingui-
nal fold consistently maintained the highest richness and diver-
sity, which may be reflective of its proximity to the perirectal area
as well as the temperature and humidity in this region (32). Note
that enteric Gram-negative rods were found not only in the ingui-
nal fold but also at all body sites. Overall, our data suggest that
even following decolonization, an individual’s skin microbiota is a
“personal trait” and is temporally stable, similar to recent findings
by Oh and colleagues (17). Thus, over time, the microbiota of the
skin of an individual is more similar to “self” than to “others.”

This study has numerous strengths, such as the inclusion of
both hospitalized and community-dwelling individuals, with
multiple longitudinal samplings, and the robust number of taxa
identified to the species level, a degree of granularity that is imper-
ative for assessing the skin microbiota. However, this study is not
without limitations, including the limited sample size, the appli-
cation of different decolonization regimens between the cohorts
(which may have differential activity on the microbiota and thus
precludes comparisons between cohorts), and the variable num-
ber of samplings obtained from hospitalized patients.

As endogenous microbial communities exist in a delicate bal-
ance within a niche, many microorganisms produce toxins and
bacteriocins or augment host immune responses to ward off po-
tentially pathogenic organisms. We were thus encouraged by the
findings of the present study demonstrating that topical antimi-
crobial therapies do not completely eradicate the commensal mi-
crobes, or so-called “good bacteria,” on the skin. Although prior
decolonization investigations in hospital and community settings
have demonstrated reduced burdens of S. aureus colonization and
infection with the administration of topical antimicrobials (4, 5,
8), important considerations of these therapies include the lon-
gevity of effectiveness as well as microbial development of resis-
tance to these agents (39, 42–44). Thus, development of novel
preventive strategies is essential, and one promising approach is
that of “bacterial interference,” or the application of nonpatho-
genic organisms to impede or outcompete colonization or infec-
tion by potential pathogens. Indeed, this practice was imple-
mented in the 1960s to abrogate nursery outbreaks caused by
hypervirulent S. aureus strains (phage type 80/81) (45–48).

In conducting the present study, we postulated that the con-
cept of bacterial interference might have clinical utility in the con-
temporary era as well. While we anticipated identification of one
or two key organisms sufficient and necessary to outcompete S.
aureus within a niche, this hypothesis was not substantiated. In
prior investigations of S. aureus in the context of other constitu-
ents of the skin and nasal microbiota, an inverse relationship was
observed between the presence of S. aureus and that of a variety of
other flora, including S. epidermidis, Corynebacterium spp., Strep-
tococcus spp., and Propionibacterium spp., suggesting competition
or, again, bacterial interference between these organisms within
the niche (49–53). In the present study, however, S. aureus often
coexisted with Propionibacterium spp. and S. epidermidis, and in
contrast to studies suggesting that S. aureus predominates in the
niche, the presence of S. aureus did not affect microbial richness or
diversity (52). While the concept of a single-organism probiotic is
an attractive “natural” method for S. aureus eradication and in-
fection prevention, it is likely that a community of organisms is
required, similar to the approach of normal flora restoration ther-
apy for Clostridium difficile infection. Restoration of the normal

skin and nasal flora as an infection prevention approach is an
exciting avenue for future investigation.

In conclusion, we demonstrated that topical antimicrobials re-
duced the burden of S. aureus on the skin of community-dwelling
and hospitalized individuals while preserving other components
of the skin and nasal microbiota. Specific taxa permitting or pre-
cluding S. aureus colonization were not identified.
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