3,156 research outputs found

    Electromagnetic Transition Strengths in Heavy Nuclei

    Full text link
    We calculate reduced B(E2) and B(M1) electromagnetic transition strengths within and between K-bands in support of a recently proposed model for the structure of heavy nuclei. Previously, only spectra and a rough indication of the largest B(E2) strengths were reported. The present more detailed calculations should aid the experimental identification of the predicted 0+0^+, 1+1^+ and 2+2^+ bands and, in particular, act to confirm or refute the suggestion that the model 0+0^+ and 2+2^+ bands correspond to the well known and widespread beta and gamma bands. Furthermore they pinpoint transitions which can indicate the presence of a so far elusive 1+1^+ band by feeding relatively strongly into or out of it. Some of these transitions may already have been measured in 230^{230}Th, 232^{232}Th and 238^{238}U.Comment: 10 pages, 1 Figure, submitted to Physical Review

    Complementarity and Scientific Rationality

    Get PDF
    Bohr's interpretation of quantum mechanics has been criticized as incoherent and opportunistic, and based on doubtful philosophical premises. If so Bohr's influence, in the pre-war period of 1927-1939, is the harder to explain, and the acceptance of his approach to quantum mechanics over de Broglie's had no reasonable foundation. But Bohr's interpretation changed little from the time of its first appearance, and stood independent of any philosophical presuppositions. The principle of complementarity is itself best read as a conjecture of unusually wide scope, on the nature and future course of explanations in the sciences (and not only the physical sciences). If it must be judged a failure today, it is not because of any internal inconsistency.Comment: 29 page

    A simple description of the states 0+0^+ and 2+2^+ in 168Er^{168}Er

    Full text link
    A sixth-order quadrupole boson Hamiltonian is used to describe 26 states 0+0^+ and 67 states 2+2^+ which have been recently identified in 168Er^{168}Er. Two closed expressions are alternatively used for energy levels. One corresponds to a semi-classical approach while the other one represents the exact eigenvalue of the model Hamiltonian. The semi-classical expression involves four parameters, while the exact eigenvalue is determined by five parameters. In each of the two descriptions a least square fit procedure is adopted. Both expressions provide a surprisingly good agreement with the experimental data.Comment: 9 pages, 5 figure

    Triaxial quadrupole deformation dynamics in sd-shell nuclei around 26Mg

    Full text link
    Large-amplitude dynamics of axial and triaxial quadrupole deformation in 24,26Mg, 24Ne, and 28Si is investigated on the basis of the quadrupole collective Hamiltonian constructed with use of the constrained Hartree-Fock-Bogoliubov plus the local quasiparticle random phase approximation method. The calculation reproduces well properties of the ground rotational bands, and beta and gamma vibrations in 24Mg and 28Si. The gamma-softness in the collective states of 26Mg and 24Ne are discussed. Contributions of the neutrons and protons to the transition properties are also analyzed in connection with the large-amplitude quadrupole dynamics.Comment: 16 pages, 18 figures, submitted to Phys. Rev.

    Spectral properties of a tractable collective Hamiltonian

    Full text link
    The spectral properties of a tractable collective model Hamiltonian are studied. The potential energy is truncated up to quartic terms in the quadrupole deformation variables, incorporating vibrational, γ\gamma-independent rotational and axially deformed rotational structures. These physically significant limits are analysed in detail and confronted with well-established approximation schemes. Furthermore, transitional Hamiltonians in between the limits are presented and discussed. All results are obtained within a recently presented Cartan-Weyl based framework to calculate SU(1,1)×SO(5)SU(1,1)\times SO(5) embedded quadrupole collective observables.Comment: submitted to PR

    Quadrupole collective variables in the natural Cartan-Weyl basis

    Get PDF
    The matrix elements of the quadrupole collective variables, emerging from collective nuclear models, are calculated in the natural Cartan-Weyl basis of O(5) which is a subgroup of a covering SU(1,1)×O(5)SU(1,1)\times O(5) structure. Making use of an intermediate set method, explicit expressions of the matrix elements are obtained in a pure algebraic way, fixing the γ\gamma-rotational structure of collective quadrupole models.Comment: submitted to Journal of Physics

    Three-body model calculations for 16C nucleus

    Get PDF
    We apply a three-body model consisting of two valence neutrons and the core nucleus 14^{14}C in order to investigate the ground state properties and the electronic quadrupole transition of the 16^{16}C nucleus. The discretized continuum spectrum within a large box is taken into account by using a single-particle basis obtained from a Woods-Saxon potential. The calculated B(E2) value from the first 2+^+ state to the ground state shows good agreement with the observed data with the core polarization charge which reproduces the experimental B(E2) value for 15^{15}C. We also show that the present calculation well accounts for the longitudinal momentum distribution of 15^{15}C fragment from the breakup of 16^{16}C nucleus. We point out that the dominant (d5/2)2d_{5/2})^2 configuration in the ground state of 16^{16}C plays a crucial role for these agreement.Comment: 5 pages, 3 figures, 3 table

    Gamma-soft Analog of the Confined Beta-soft Rotor Model

    Full text link
    A gamma-soft analog of the confined beta-soft (CBS) rotor model is developed, by using a gamma-independent displaced infinite well beta-potential in the Bohr Hamiltonian, for which exact separation of variables is possible. Level schemes interpolating between the E(5) critical point symmetry (with R(4/2)=E(4)/E(2)= 2.20) and the O(5) gamma-soft rotor (with R(4/2)=2.50) are obtained, exhibiting a crossover of excited 0+ bandheads which leads to agreement with the general trends of first excited 0+ states in this region and is observed experimentally in 128-Xe and 130-Xe.Comment: 10 pages, LaTeX, including 7 eps figure

    Study of the transition from pairing vibrational to pairing rotational regimes between magic numbers N=50 and N=82, with two-nucleon transfer

    Full text link
    Absolute values of two-particle transfer cross sections along the Sn-isotopic chain from closed shell to closed shell (100Sn,132Sn) are calculated taking properly into account nuclear correlations, as well as the successive, simultaneous and non-orthogonality contributions to the differential cross sections. The results are compared with systematic, homogeneous bombarding conditions (p, t) data. The observed agreement, almost within statistical errors and without free parameters, testify to the fact that theory is able to be quantitative in its predictions

    Multipole strength function of deformed superfluid nuclei made easy

    Full text link
    We present an efficient method for calculating strength functions using the finite amplitude method (FAM) for deformed superfluid heavy nuclei within the framework of the nuclear density functional theory. We demonstrate that FAM reproduces strength functions obtained with the fully self-consistent quasi-particle random-phase approximation (QRPA) at a fraction of computational cost. As a demonstration, we compute the isoscalar and isovector monopole strength for strongly deformed configurations in 240^{240}Pu by considering huge quasi-particle QRPA spaces. Our approach to FAM, based on Broyden's iterative procedure, opens the possibility for large-scale calculations of strength distributions in well-bound and weakly bound nuclei across the nuclear landscape.Comment: 5 pages, 3 figure
    • 

    corecore