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We apply a three-body model consisting of two valence neutrons and the core nucleus 14C in order to
investigate the ground state properties and electric quadrupole transition of the 16C nucleus. The discretized
continuum spectrum within a large box is taken into account by using a single-particle basis obtained from
a Woods-Saxon potential. The calculated B(E2) value from the first 2+ state to the ground state shows good
agreement with the observed data with the core polarization charge which reproduces the experimental B(E2)
value for 15C. We also show that the present calculation accounts well for the longitudinal momentum distribution
of the 15C fragment from the breakup of the 16C nucleus. We point out that the dominant (d5/2)2 configuration in
the ground state of 16C plays a crucial role in these agreements.
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Nuclei far from the β stability line often reveal unique phe-
nomena originating from a large asymmetry in the neutron and
proton numbers. A typical example is the neutron collective
mode, which is characterized only by the neutron excitation,
with negligible contribution from the proton excitation. A
recent calculation based on the continuum quasiparticle ran-
dom phase approximation (QRPA) has, in fact, predicted the
existence of such a neutron mode in the low-lying quadrupole
excitation in 24O [1].

Recently, the electric quadrupole (E2) transition from
the first 2+ state at 1.766 MeV to the ground state in 16C
has been measured at RIKEN [2]. The observed B(E2)
value (0.26 ± 0.05 Weisskopf units) has turned out to be
surprisingly small when compared with the known systematics
in stable nuclei. On the other hand, a distorted-wave Born
approximation (DWBA) analysis for 16C + 208Pb inelastic
scattering indicates a large enhancement of the ratio of the
neutron to proton transition amplitudes, Mn/Mp = 7.6 ± 1.7
[3], which is considerably larger than the isoscalar value,
N/Z = 1.67. A similar value for Mn/Mp was obtained from
the inelastic proton scattering from the 16C nucleus [4]. These
experimental data suggest that the first 2+ state in 16C is a good
candidate for the neutron excitation mode.

There have already been various theoretical calculations
for the structure of the 16C nucleus [5–10]. Except for a
recent microscopic shell-model calculation [10], however,
they all fail to reproduce the anomalously hindered E2
transition. For instance, Suzuki and his collaborators solved a
n + n + 14C three-body model and found that the E2 strength
is overestimated by a factor of about 2 if the same core
polarization charge is employed as that used to describe the
15C nucleus. A similar overestimation of the B(E2) value
was found in the antisymmetrized molecular dynamics (AMD)
calculation [5] as well as in the deformed Skyrme Hartree-Fock
calculation [6].

In this paper, we apply a three-body model with a finite-
range n-n interaction [8,9] to describe the ground and excited
states in the 16C nucleus. We employ the single-particle
(s.p.) basis obtained from a n-14C Woods-Saxon potential to

diagonalize the three-body Hamiltonian. The continuum s.p.
spectrum is discretized in a large box. Notice that the effect
of continuum couplings can be properly accounted for with
such a s.p. basis [11]. A similar three-body model with a
density-dependent contact interaction has successfully been
applied to describe the structure of Borromean nuclei [12–16].
In Refs. [8,9], Suzuki et al. adopted the correlated Gaussian
basis to diagonalize a similar three-body Hamiltonian for
16C. However, it remains an open question as to whether
the correlated Gaussian basis is efficient enough to take into
account the continuum couplings. Therefore, our study can
be considered as a complement to the previous studies in
Refs. [8,9].

Assuming that the effect of core excitation on the low-lying
spectrum of the 16C nucleus is negligible [8,17], we consider
the following three-body Hamiltonian:

H = ĥ(1) + ĥ(2) + Vnn + p1 · p2

Acm
, (1)

where m and Ac are the nucleon mass and mass number of the
inert core nucleus, respectively, and ĥ is the s.p. Hamiltonian
for a valence neutron interacting with the core. The diagonal
component of the recoil kinetic energy of the core nucleus
is included in ĥ, whereas the off-diagonal part is taken into
account in the last term in the Hamiltonian (1). We use a
Woods-Saxon potential for the interaction in ĥ,

VnC(r) =
(

V0 + Vls (l · s)
1

r

d

dr

) [
1 + exp

(
r − R

a

)]−1

,

(2)
where R = r0A

1/3
c . The parameter sets for the Woods-Saxon

potential employed in this paper are listed in Table I. Sets A,
B, and C were used in Refs. [8,9], while set D was used in
Ref. [17] to discuss the role of particle-vibration coupling in
the 15C nucleus. These parameter sets yield almost the same
value for the energy of the 2s1/2 state, ε2s1/2 ∼ −1.21 MeV,
and of the 1d5/2 state, ε1d5/2 ∼ −0.47 MeV.

In our previous work [15,16], we used the density-
dependent delta force [12,13] for the interaction between
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TABLE I. Parameters for the Woods-Saxon neutron-core
potential VnC in Eq. (2).

Set V0 (MeV) Vls (MeV fm2) r0 (fm) a (fm)

A −50.31 16.64 1.25 0.65
B −50.31 (l = 0) 31.25 1.25 0.65

−47.18 (l �= 0)
C −51.71 26.24 1.20 0.73
D −44.41 31.52 1.27 0.90

the valence neutrons, Vnn. However, here we use the same
finite-range force as in Ref. [8] in order to compare our results
with those of Refs. [8,9]. That is the singlet-even part of the
Minnesota potential [18],

Vnn(r1, r2) = v0 e−b0(r1−r2)2 + v1 e−b1(r1−r2)2
, (3)

with v0 = 200 MeV, b0 = 1.487 fm−2, and b1 = 0.465 fm−2.
Following Ref. [8], we adjust the value of v1 for each parameter
set of the Woods-Saxon potential so that the ground state
energy of 16C, Eg.s. = −5.47 MeV, is reproduced.

The three-body Hamiltonian (1) is diagonalized by ex-
panding the two-particle wave function �(r1, r2) with the
eigenfunction φnljm of the s.p. Hamiltonian ĥ, where n is
the radial quantum number. The continuum s.p. states are
discretized with a box size of Rbox = 30 fm. We include the
s.p. angular momentum l1 and l2 up to 5, and truncate the
model space of the two-particle states at ε1 + ε2 = 30 MeV,
where ε is the s.p. energy of the valence particle. We have
checked that the results do not significantly change even if
we truncate the model space at 60 or 80 MeV, as long as v1 in
Eq. (3) is adjusted for each model space. In the diagonalization,
we explicitly exclude the 1s1/2, 1p3/2, and 1p1/2 states, which
are occupied by the core nucleus. The results for the ground
state and the second 0+ state are summarized in Table II. The
parameter set dependence is small, although set D reproduces
the excitation energy of the second 0+ state, E0+

2
, and the rms

radius of the 16C nucleus, r(16C), slightly better than the other

TABLE II. Properties of the ground and the second 0+ states
obtained with several parameter sets for the neutron-core potential
VnC . Pss and Pdd are the probabilities for the [(2s1/2)2] and [(1d5/2)2]
components in the wave function, respectively. PS=0 is the probability
of the spin-singlet (S = 0) component in the ground state. E0+

2
is the

excitation energy for the second 0+ state in MeV, while r(16C) is
the rms radius of the 16C nucleus in fm. The experimental values
are E0+

2
(exp) = 3.00 MeV and r(16C; exp) = 2.64 ± 0.05 fm [19],

respectively.

Set Pss(g.s.) Pdd (g.s.) PS=0 r(16C) E0+
2

Pss(0
+
2 ) Pdd (0+

2 )

A 0.184 0.699 0.784 2.56 2.32 0.755 0.201
B 0.177 0.711 0.746 2.56 2.35 0.775 0.187
C 0.183 0.696 0.768 2.57 2.39 0.763 0.196
D 0.206 0.633 0.808 2.64 2.48 0.733 0.221

parameter sets. The latter quantity is calculated as [12–14]

〈r2〉Ac+2 = Ac

Ac + 2
〈r2〉Ac

+ 1

Ac + 2

(
2Ac 〈ρ2〉
Ac + 2

+ 〈λ2〉
2

)
,

(4)
where λ = (r1 + r2)/2 and ρ = r1 − r2. Following Refs. [8,
9], we take 2.35 fm for the rms radius of the core nucleus,√〈r2〉Ac

. We find that the rms radius of 16C is well reproduced
in the present calculations.

We notice that our results are considerably different from
those of Refs. [8,9] concerning the probability for the [(2s1/2)2]
and [(1d5/2)2] components in the wave function, which
are denoted by Pss and Pdd in Table II, respectively. Our
results show that the ground state of 16C mainly consists
of the [(1d5/2)2] configuration, while the second 0+ state is
dominated by the [(2s1/2)2] configuration. This is in contrast
to the results of Refs. [8,9], which show the dominance of the
[(2s1/2)2] component in the ground state. As a consequence,
we also obtain a smaller value of the spin-singlet probability,
PS=0, than in Ref. [9]. Notice that the d-wave dominance was
suggested from the analyses of longitudinal momentum distri-
bution for the one-neutron knockout reaction of 16C [20,21].
We will discuss the longitudinal momentum distribution later
in this paper.

It is worthwhile to consider a simple two-level pairing
model consisting of the 2s1/2 and 1d5/2 s.p. levels in order to
illustrate how the [(1d5/2)2] configuration becomes dominant
in the ground state of 16C. If there were no interaction between
the valence neutrons, the ground state wave function would be
the pure [(2s1/2)2] state, since the s.p. energy for the 2s1/2 state
is lower than that for the 1d5/2 state (ε2s1/2 = −1.21 MeV and
ε1d5/2 = −0.47 MeV). If one assumes a δ interaction, Vnn =
−g δ(r1 − r2) between the valence neutrons, the diagonal
matrix element of the Hamiltonian reads [22]

Hii = 2εi − g
2j + 1

8π
Iii, (5)

where Iii is the radial integral for the configuration (i)2.
Therefore, the pairing interaction influences the [(1d5/2)2]
configuration more strongly than the [(2s1/2)2] configuration
by a factor of 3 when the radial integrals Iii are similar to
each other. If we choose the strength g so that the ground
state energy is reproduced within the two-level model, we find
g = 1005 MeV fm−3 for the parameter set D. This leads to the
diagonal matrix elements of Hii = −3.70 MeV for i = 2s1/2

and Hii = −4.85 MeV for i = 1d5/2, lowering the [(1d5/2)2]
configuration in energy. Taking into account the off-diagonal
matrix element and diagonalizing the 2 × 2 matrix, we find
Pss = 0.26 and Pdd = 0.74 for the ground state, which values
are very close to the results shown in Table II.

The upper panels of Figs. 1 and 2 show the two-particle
densities ρ2(r1, r2, θ ) for the ground state and the second 0+
state, respectively. These are obtained with the Minnesota
potential and the parameter set D for the s.p. potential. To
facilitate the presentation, we set r1 = r2 = r and multiply
the weight factor of 8π2r4 sin θ [15]. Despite that Pss and
Pdd are considerably different, we obtain density distributions
similar to those in Ref. [9]. In particular, we observe similar
dineutron and cigarlike configurations in the ground state, as
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FIG. 1. (Color online) Upper panel: Two-particle density for the
ground state of 16C obtained with parameter set D for single-particle
potential as a function of r1 = r2 = r and the angle between the
valence neutrons, θ . It is weighted with a factor of 8π2r4 sin θ .
Lower panel: Corresponding angular density weighted with a factor
of 2π sin θ . Solid line is the result of the three-body model calculation
with the Minnesota potential. Dotted and dashed lines are for the pure
configurations, as shown.

well as a boomerang configuration in the second 0+ state as in
Ref. [9]. The lower panels of Figs. 1 and 2 show the angular
densities ρ(θ ) obtained by integrating the radial coordinates
in the two-particle density [15]. It is multiplied by a weight
factor of 2π sin θ . As a comparison, we also show the angular
densities for the pure [(2s1/2)2] and [(1d5/2)2] configurations.
They are given by ρ(θ ) = 1/4π for the [(2s1/2)2] configuration
and ρ(θ ) = 3/4π · (5/4 · cos4 θ + 3/20) for the [(1d5/2)2]
configuration. As we see in the figures, the angular density
for the ground state is close to that for the pure [(1d5/2)2]
configuration, while the angular density for the second 0+
state is close to that for the pure [(2s1/2)2] configuration, being
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FIG. 2. (Color online) Same as Fig. 1, but for the second 0+ state
of 16C.

TABLE III. Properties of the first 2+ state of 16C obtained with
several parameter sets for the neutron-core potential VnC . Psd and
Pdd are the probability for the [(2s1/2) × (1d5/2)] and [(1d5/2)2]
components in the wave function, respectively. E2+ is the excitation
energy in MeV, while B(E2) is the electric quadrupole transition
strength from the 2+ state to the ground state, in e2 fm4. The
experimental values are E2+ (exp.) = 1.77 MeV and B(E2; exp.) =
0.63 ± 0.27 e2 fm4 [2]. eI

pol is the core polarization charge that
reproduces the experimental B(E2) value for the 15C nucleus within
the n-14C model, whereas eII

pol takes into account the mass number
dependence according to Eq. (11).

Set E2+ Psd Pdd eI
pol B(E2; eI

pol) eII
pol B(E2; eII

pol)

A 1.26 0.392 0.504 0.162 0.972 0.145 0.808
B 1.33 0.400 0.515 0.160 0.937 0.144 0.781
C 1.34 0.402 0.500 0.153 0.956 0.137 0.797
D 1.63 0.472 0.406 0.122 1.074 0.109 0.899

consistent with the calculated values for Pdd and Pss listed in
Table II.

We next discuss the quadrupole excitation in 16C. Table III
summarizes the results of the present three-body model for the
first 2+ state. The energy of the 2+ state is well reproduced
with this model, especially with the parameter set D. As
compared with the results of Refs. [8,9], the probabilities for
the [2s1/21d5/2] and [(1d5/2)2] components, denoted as Psd

and Pdd , respectively, are comparable to each other in our
calculation, whereas Psd is much larger than Pdd in Ref. [9].

To calculate the E2 transition strength, we introduce the
core polarization charge, epol. The E2 operator Q̂2µ in the
present three-body model then reads (for µ = 0) [8,9],

Q̂20 =
(

Zc

A2
e + A2 − 2A + 2

A2
epol

) 2∑
i=1

r2
i Y20(r̂ i)

+
√

5

4π

(
Zc

A2
e − 2

A − 1

A2
epol

)

× (2z1z2 − x1x2 − y1y2), (6)

where A = Ac + 2. The value of the core polarization charge
which is required to fit the experimental B(E2) value in the 15C
nucleus, B(E2; 5/2+ → 1/2+) = 0.97 ± 0.02 e2 fm4 [23], is
listed as eI

pol in the fifth column in Table III. Notice that these
are significantly smaller than that obtained with the harmonic
vibration model of Bohr and Mottelson, eBM = 0.55 for 16C,
which, however, does not include the effect of loosely bound
wave functions [see Eq. (6-386b) in Ref. [24]]. For a loosely
bound state, the polarization charge may be modified as

epol = eBM
3R2/5

〈l2j2|r2|l1j1〉 , (7)

where R = 1.2A1/3 fm and 〈l2j2|r2|l1j1〉 is the radial ma-
trix element between the s.p. states (l1j1) and (l2j2) [see
Eq. (6-387) in Ref. [24]]. With set D, we obtain the ratio
3R2

5 /〈1d5/2|r2|2s1/2〉 = 0.205 as a reduction factor for the
polarization charge for the transition from 1d5/2 to 2s1/2 s.p.
states. This leads to epol = 0.113, which is consistent with eI

pol
shown in Table I. A similar small value of polarization charge
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has been obtained also with the self-consistent Hartree-Fock
(HF) + particle-vibration model [25]. The calculated B(E2)
value for 16C with eI

pol is listed in the sixth column in
Table III. In contrast to the previous calculations with the three-
body model [8,9], which overestimated the B(E2) value for
16C with eI

pol, our calculations reproduce well the experimental
B(E2) value. We notice that the small values of Pss and Psd in
our wave functions are responsible for the good agreement with
the experimental B(E2) value. For the parameter set D, the E2
matrix elements between various two-particle configurations
are estimated to be

〈2s1/2 1d5/2|Q̂20|(2s1/2)2〉 = −1.087 e fm2, (8)

〈2s1/2 1d5/2|Q̂20|[(1d5/2)2]J=0〉 = −0.627 e fm2, (9)

〈[(1d5/2)2]J=2|Q̂20|[(1d5/2)2]J=0〉 = −0.811e fm2. (10)

Thus, the largest matrix element is the one between the
(2s1/2)2 configuration in the ground state and the [2s1/2

1d5/2] configuration in the 2+ state, although the other two
matrix elements have substantial contributions. Naturally,
small values of Pss and Psd lead to a small B(E2) value,
which is desired in order to reproduce the experimental data.
A further improvement of the calculated value of B(E2) can
be achieved if the mass number dependence of polarization
charge is taken into account. In Ref. [26], the result of the HF
+ particle-vibration model for the core polarization charge of
carbon isotopes was parametrized as

epol = 0.82
Z

A
− 0.25

N − Z

A
+

(
0.12 − 0.36

Z

A

N − Z

A

)
τz.

(11)
This formula leads to the ratio of epol(16C)/epol(15C) = 0.897.
The polarization charge that is scaled by this factor from eI

pol is
denoted by eII

pol in Table III. We find that the calculated B(E2)
values with eII

pol agree remarkably well with the experimental
value within the experimental uncertainty.

We now discuss the longitudinal momentum distribution of
the 15C fragment in the breakup reaction of 16C nucleus. For
this purpose, we calculate the the stripping cross section in the
eikonal approximation [27–30]. That is [8,29,30],

dσ−n

dpz

= 1

2πh̄

1

2l + 1

∑
m

∫ ∞

0
d2bn [1 − |Sn(bn)|2]

×
∫ ∞

0
d2r⊥|Sc(bc)|2

∣∣∣∣
∫ ∞

−∞
dz e−ipzz/h̄glj (r)Ylm(r̂)

∣∣∣∣
2

,

(12)

where glj (r) is the radial part of the spectroscopic ampli-
tude given by 〈�ljm(15C)|�gs(16C)〉 = gjl(r)Yj l−m(r̂), with
Yj l−m(r̂) being the spinor spherical harmonics. bn and bc are
the impact parameters for the neutron and core nucleus, re-
spectively. They are related to the relative coordinate between
the neutron and core nucleus, r = (r⊥, z), by bn = bc + r⊥.
In the eikonal approximation, the S matrix is calculated as
S(b) = exp(2iχ (b)), with

χ (b) = − 1

2h̄v

∫ ∞

−∞
dz V (b, z), (13)
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FIG. 3. Longitudinal momentum distribution of the 15C fragment
from the breakup reaction of 16C on 12C target at 83 MeV/nucleon,
obtained with parameter set D. Contributions from the 1/2+ and
5/2+ states of 15C are also shown. Experimental data are from
Ref. [21].

where v is the incident velocity and V (b, z) is an
optical potential between a fragment and the target
nucleus.

Figure 3 compares the eikonal approximation for the
breakup reaction 16C + 12C → 15C + X at E = 83 MeV/
nucleon with the experimental data [21]. We use the optical
potential of Comfort and Karp [31] for the neutron-12C
potential. The optical potential between the 15C fragment and
the target is constructed with the single folding procedure
using the 14C density given in Ref. [32] and a s.p. wave
function for the valence neutron for a specified final state
of the fragment nucleus. As is often done, we assume that
the cross sections for diffractive breakup (i.e., elastic breakup)
behave exactly the same as the stripping cross sections as a
function of longitudinal momentum, and thus we scale the
calculated cross section (12) to match with the peak of the
experimental data. In Fig. 3, contributions from the 1s1/2 and
2d5/2 states of the fragment 15C nucleus are added incoher-
ently to obtain the total one-neutron removal cross section,
which is denoted by the solid line. Our result reproduces
remarkably well the experimental longitudinal momentum
distribution of the 15C fragment in the range of −200 � pz �
200 MeV/c.

In summary, we have applied the n-n-14C three-body model
to investigate the properties of the 16C nucleus. We diag-
onalized the three-body Hamiltonian with the finite-range
Minnesota potential for the interaction between the valence
neutrons. As the basis states, we adopted the single-particle
states obtained from the Woods-Saxon potentials, in which
the continuum spectrum is discretized within the large box.
With this model, the experimental data for the rms radius, the
B(E2) value from the first 2+ state to the ground state, and
the longitudinal momentum distribution of the 15C fragment
from 16C breakup are all reproduced well. In particular, we
have succeeded to reproduce the B(E2) value for both 15C
and 16C nuclei simultaneously using the core polarization
charge which is consistent with the one obtained with the
particle-vibration coupling models. The calculated probability
of the (1d5/2)2 configuration in the ground state wave function
of 16C is about 70%, while that of the (2s1/2)2 configuration
is about 18%. These values are close to those extracted
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from the analyses of the experimental longitudinal momentum
distribution.
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