1,661 research outputs found
Tunable sub-luminal propagation of narrowband x-ray pulses
Group velocity control is demonstrated for x-ray photons of 14.4 keV energy
via a direct measurement of the temporal delay imposed on spectrally narrow
x-ray pulses. Sub-luminal light propagation is achieved by inducing a steep
positive linear dispersion in the optical response of Fe M\"ossbauer
nuclei embedded in a thin film planar x-ray cavity. The direct detection of the
temporal pulse delay is enabled by generating frequency-tunable spectrally
narrow x-ray pulses from broadband pulsed synchrotron radiation. Our
theoretical model is in good agreement with the experimental data.Comment: 8 pages, 4 figure
System-size and centrality dependence of charged kaon and pion production in nucleus-nucleus collisions at 40A GeV and158A GeV beam energy
Measurements of charged pion and kaon production are presented in centrality
selected Pb+Pb collisions at 40A GeV and 158A GeV beam energy as well as in
semi-central C+C and Si+Si interactions at 40A GeV. Transverse mass spectra,
rapidity spectra and total yields are determined as a function of centrality.
The system-size and centrality dependence of relative strangeness production in
nucleus-nucleus collisions at 40A GeV and 158A GeV beam energy are derived from
the data presented here and published data for C+C and Si+Si collisions at 158A
GeV beam energy. At both energies a steep increase with centrality is observed
for small systems followed by a weak rise or even saturation for higher
centralities. This behavior is compared to calculations using transport models
(UrQMD and HSD), a percolation model and the core-corona approach.Comment: 32 pages, 14 figures, 4 tables, typo table II correcte
Antideuteron and deuteron production in mid-central Pb+Pb collisions at 158 GeV
Production of deuterons and antideuterons was studied by the NA49 experiment
in the 23.5% most central Pb+Pb collisions at the top SPS energy of
=17.3 GeV. Invariant yields for and were measured
as a function of centrality in the center-of-mass rapidity range .
Results for together with previously published
measurements are discussed in the context of the coalescence model. The
coalescence parameters were deduced as a function of transverse momentum
and collision centrality.Comment: 9 figure
High p_T Spectra of Identified Particles Produced in Pb+Pb Collisions at 158A GeV Beam Energy
Results of the NA49 collaboration on the production of hadrons with large
transverse momentum in Pb+Pb collisions at 158A GeV beam energy are presented.
A range up to p_T = 4 GeV/c is covered. The nuclear modification factor R_CP is
extracted for pions, kaons and protons, and the baryon to meson ratios p/pi+,
pbar/pi- and Lambda/K^0_s are studied. All results are compared to other
measurements at SPS and RHIC and to theoretical calculations.Comment: Submitted to J. Phys. G (Proceedings of the 9th International
Conference on Strangeness in Quark Matter, Los Angeles, USA, March 26-31,
2006). 5 pages, 3 figure
Strangeness production at SPS energies
We present a summary of measurements of strange particles performed by the
experiment NA49 in central and minimum bias Pb+Pb collisions in the beam energy
range 20A - 158A GeV. New results on Xi production in central Pb+Pb collisions
and on Lambda, Xi production in minimum bias collisions are shown. Transverse
mass spectra and rapidity distributions of strange particles at different
energies are compared. The energy dependence of the particle yields and ratios
is discussed. NA49 measurements of the Lambda and Xi enhancement factors are
shown for the first time.Comment: Submitted to J. Phys. G (Proceedings of the 9th International
Conference on Strangeness in Quark Matter, Los Angeles, USA, March 26-31,
2006). 9 pages, 9 figure
Measurement of event-by-event transverse momentum and multiplicity fluctuations using strongly intensive measures and in nucleus-nucleus collisions at the CERN Super Proton Synchrotron
Results from the NA49 experiment at the CERN SPS are presented on
event-by-event transverse momentum and multiplicity fluctuations of charged
particles, produced at forward rapidities in central Pb+Pb interactions at beam
momenta 20, 30, 40, 80, and 158 GeV/c, as well as in systems of
different size (, C+C, Si+Si, and Pb+Pb) at 158 GeV/c. This publication
extends the previous NA49 measurements of the strongly intensive measure
by a study of the recently proposed strongly intensive measures of
fluctuations and . In the explored kinematic
region transverse momentum and multiplicity fluctuations show no significant
energy dependence in the SPS energy range. However, a remarkable system size
dependence is observed for both and , with the
largest values measured in peripheral Pb+Pb interactions. The results are
compared with NA61/SHINE measurements in collisions, as well as with
predictions of the UrQMD and EPOS models.Comment: 12 pages, 14 figures, to be submitted to PR
Energy dependence of multiplicity fluctuations in heavy ion collisions
The energy dependence of multiplicity fluctuations was studied for the most central Pb+Pb collisions at 20A, 30A, 40A, 80A and 158A GeV by the NA49 experiment at the CERN SPS. The multiplicity distribution for negatively and positively charged hadrons is significantly narrower than Poisson one for all energies. No significant structure in energy dependence of the scaled variance of multiplicity fluctuations is observed. The measured scaled variance is lower than the one predicted by the grand-canonical formulation of the hadron-resonance gas model. The results for scaled variance are in approximate agreement with the string-hadronic model UrQMD
Charged Particle Production in Proton-, Deuteron-, Oxygen- and Sulphur-Nucleus Collisions at 200 GeV per Nucleon
The transverse momentum and rapidity distributions of net protons and
negatively charged hadrons have been measured for minimum bias proton-nucleus
and deuteron-gold interactions, as well as central oxygen-gold and
sulphur-nucleus collisions at 200 GeV per nucleon. The rapidity density of net
protons at midrapidity in central nucleus-nucleus collisions increases both
with target mass for sulphur projectiles and with the projectile mass for a
gold target. The shape of the rapidity distributions of net protons forward of
midrapidity for d+Au and central S+Au collisions is similar. The average
rapidity loss is larger than 2 units of rapidity for reactions with the gold
target. The transverse momentum spectra of net protons for all reactions can be
described by a thermal distribution with `temperatures' between 145 +- 11 MeV
(p+S interactions) and 244 +- 43 MeV (central S+Au collisions). The
multiplicity of negatively charged hadrons increases with the mass of the
colliding system. The shape of the transverse momentum spectra of negatively
charged hadrons changes from minimum bias p+p and p+S interactions to p+Au and
central nucleus-nucleus collisions. The mean transverse momentum is almost
constant in the vicinity of midrapidity and shows little variation with the
target and projectile masses. The average number of produced negatively charged
hadrons per participant baryon increases slightly from p+p, p+A to central
S+S,Ag collisions.Comment: 47 pages, submitted to Z. Phys.
System-size dependence of strangeness production in nucleus-nucleus collisions at sqrt{s_{NN}}=17.3 GeV
Emission of pi, K, phi and Lambda was measured in near-central C+C and Si+Si
collisions at 158 AGeV beam energy. Together with earlier data for p+p, S+S and
Pb+Pb, the system-size dependence of relative strangeness production in
nucleus-nucleus collisions is obtained. Its fast rise and the saturation
observed at about 60 participating nucleons can be understood as onset of the
formation of coherent partonic subsystems of increasing size.Comment: Phys.Rev.Lett in print; version2: changes made according to the
request of the referee
- …
