1,790 research outputs found
CLAS+FROST: new generation of photoproduction experiments at Jefferson Lab
A large part of the experimental program in Hall B of the Jefferson Lab is
dedicated to baryon spectroscopy. Photoproduction experiments are essential
part of this program. CEBAF Large Acceptance Spectrometer (CLAS) and
availability of circularly and linearly polarized tagged photon beams provide
unique conditions for this type of experiments. Recent addition of the Frozen
Spin Target (FROST) gives a remarkable opportunity to measure double and triple
polarization observables for different pseudo-scalar meson photoproduction
processes. For the first time, a complete or nearly complete experiment becomes
possible and will allow model independent extraction of the reaction amplitude.
An overview of the experiment and its current status is presented.Comment: 6 pages, 7 figures. Invited paper NSTAR 2009 conferenc
Understanding depletion forces beyond entropy
The effective interaction energy of a colloidal sphere in a suspension
containing small amounts of non-ionic polymers and a flat glass surface has
been measured and calculated using total internal reflection microscopy (TIRM)
and a novel approach within density functional theory (DFT), respectively.
Quantitative agreement between experiment and theory demonstrates that the
resulting repulsive part of the depletion forces cannot be interpreted entirely
in terms of entropic arguments but that particularly at small distances
( 100 nm) attractive dispersion forces have to be taken into account
Depletion forces near curved surfaces
Based on density functional theory the influence of curvature on the
depletion potential of a single big hard sphere immersed in a fluid of small
hard spheres with packing fraction \eta_s either inside or outside of a hard
spherical cavity of radius R_c is calculated. The relevant features of this
potential are analyzed as function of \eta_s and R_c. There is a very slow
convergence towards the flat wall limit R_c \to \infty. Our results allow us to
discuss the strength of depletion forces acting near membranes both in normal
and lateral directions and to make contact with recent experimental results
Untangling the Conceptual Isssues Raised in Reydon and Scholz’s Critique of Organizational Ecology and Darwinian Populations
Reydon and Scholz raise doubts about the Darwinian status of organizational ecology by arguing that Darwinian principles are not applicable to organizational populations. Although their critique of organizational ecology’s typological essentialism is correct, they go on to reject the Darwinian status of organizational populations. This paper claims that the distinction between replicators and interactors, raised in modern philosophy of biology but not discussed by Reydon and Scholz, points the way forward for organizational ecologists. It is possible to conceptualise evolving Darwinian populations providing the inheritance mechanism is appropriately specified. By this approach, adaptation and selection are no longer dichotomised, and the evolutionary significance of knowledge transmission is highlightedPeer reviewe
Hard Spheres in Vesicles: Curvature-Induced Forces and Particle-Induced Curvature
We explore the interplay of membrane curvature and nonspecific binding due to
excluded-volume effects among colloidal particles inside lipid bilayer
vesicles. We trapped submicron spheres of two different sizes inside a
pear-shaped, multilamellar vesicle and found the larger spheres to be pinned to
the vesicle's surface and pushed in the direction of increasing curvature. A
simple model predicts that hard spheres can induce shape changes in flexible
vesicles. The results demonstrate an important relationship between the shape
of a vesicle or pore and the arrangement of particles within it.Comment: LaTeX with epsfig; ps available at
http://dept.physics.upenn.edu/~nelson/index.shtml Phys Rev Lett in press
(1997
Energy Calibration of the JLab Bremsstrahlung Tagging System
In this report, we present the energy calibration of the Hall B
bremsstrahlung tagging system at the Thomas Jefferson National Accelerator
Facility. The calibration was performed using a magnetic pair spectrometer. The
tagged photon energy spectrum was measured in coincidence with pairs
as a function of the pair spectrometer magnetic field. Taking advantage of the
internal linearity of the pair spectrometer, the energy of the tagging system
was calibrated at the level of . The absolute energy scale
was determined using the rate measurements close to the end-point of
the photon spectrum. The energy variations across the full tagging range were
found to be MeV.Comment: 15 pages, 12 figure
Pre- and post-selected ensembles and time-symmetry in quantum mechanics
An expression is proposed for the quantum mechanical state of a pre- and
post-selected ensemble, which is an ensemble determined by the final as well as
the initial state of the quantum systems involved. It is shown that the
probabilities calculated from the proposed state agree with previous
expressions, for cases where they both apply. The same probabilities are found
when they are calculated in the forward- or reverse-time directions. This work
was prompted by several problems raised by Shimony recently in relation to the
state, and time symmetry, of pre- and post-selected ensembles.Comment: RevTex4, 17 pages, no fig
Problems with Using Evolutionary Theory in Philosophy
Does science move toward truths? Are present scientific theories (approximately) true? Should we invoke truths to explain the success of science? Do our cognitive faculties track truths? Some philosophers say yes, while others say no, to these questions. Interestingly, both groups use the same scientific theory, viz., evolutionary theory, to defend their positions. I argue that it begs the question for the former group to do so because their positive answers imply that evolutionary theory is warranted, whereas it is self-defeating for the latter group to do so because their negative answers imply that evolutionary theory is unwarranted
Photoproduction of π0-pairs off protons and off neutrons
Total cross sections, angular distributions, and invariant-mass distributions have been measured for the photoproduction of π0π0 pairs off free protons and off nucleons bound in the deuteron. The experiments were performed at the MAMI accelerator facility in Mainz using the Glasgow photon tagging spectrometer and the Crystal Ball/TAPS detector. The accelerator delivered electron beams of 1508 and 1557MeV, which produced bremsstrahlung in thin radiator foils. The tagged photon beam covered energies up to 1400MeV. The data from the free proton target are in good agreement with previous measurements and were only used to test the analysis procedures. The results for differential cross sections (angular distributions and invariant-mass distributions) for free and quasi-free protons are almost identical in shape, but differ in absolute magnitude up to 15%. Thus, moderate final-state interaction effects are present. The data for quasi-free neutrons are similar to the proton data in the second resonance region (final-state invariant masses up to ≈1550 MeV), where both reactions are dominated by the N(1520)3/2−→Δ(1232)3/2+π decay. At higher energies, angular and invariant-mass distributions are different. A simple analysis of the shapes of the invariant-mass distributions in the third resonance region is consistent with strong contributions of an N⋆→Nσ decay for the proton, while the reaction is dominated by a sequential decay via a Δπ intermediate state for the neutron. The data are compared to predictions from the Two-Pion-MAID model and the Bonn-Gatchina coupled-channel analysis
Quasifree photoproduction of mesons off protons and neutrons
Differential and total cross sections for the quasifree reactions and have been determined at the
MAMI-C electron accelerator using a liquid deuterium target. Photons were
produced via bremsstrahlung from the 1.5 GeV incident electron beam and
energy-tagged with the Glasgow photon tagger. Decay photons of the neutral
decay modes and and coincident recoil nucleons were detected in a combined setup of
the Crystal Ball and the TAPS calorimeters. The -production cross
sections were measured in coincidence with recoil protons, recoil neutrons, and
in an inclusive mode without a condition on recoil nucleons, which allowed a
check of the internal consistency of the data. The effects from nuclear Fermi
motion were removed by a kinematic reconstruction of the final-state invariant
mass and possible nuclear effects on the quasifree cross section were
investigated by a comparison of free and quasifree proton data. The results,
which represent a significant improvement in statistical quality compared to
previous measurements, agree with the known neutron-to-proton cross-section
ratio in the peak of the resonance and confirm a peak in the
neutron cross section, which is absent for the proton, at a center-of-mass
energy MeV with an intrinsic width of MeV
- …
